Research article 5741 Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype Jochen Holzschuh1,*, Alejandro Barrallo-Gimeno2,†, Anne-Kathrin Ettl1, Katrin Dürr1, Ela W. Knapik2 and Wolfgang Driever1,‡ 1Developmental Biology, Institute Biology 1, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany 2GSF, Institute for Mammalian Genetics, Ingolstadter Landstrasse 1, D-85764 Neuherberg, Germany *Present address: Department of Developmental and Cell Biology, University of California Irvine, 5205 BioSci II, Irvine, CA 92697-2300, USA †Present address: Ramón y Cajal CSIC, Avenida Dr Arce 37, Madrid 28002, Spain ‡Author for correspondence (e-mail:
[email protected]) Accepted 20 August 2003 Development 130, 5741-5754 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00816 Summary Tfap2a is a transcriptional activator expressed in many phox2a and tfap2a do not appear to affect each others different cell types, including neurons, neural crest expression. Our studies show that two distinct inductive derivatives and epidermis. We show that mutations at the mechanisms control NA development in the zebrafish zebrafish locus previously called mont blanc (mob) or hindbrain. For the posterior hindbrain, we identify retinoic lockjaw (low) encode tfap2a. The mutant phenotype reveals acid as an important signal to induce NA differentiation in that tfap2a is essential for the development of hindbrain the medulla oblongata and area postrema, where it expands noradrenergic (NA) neurons of the locus coeruleus, the tfap2a expression domain and thus acts upstream of medulla and area postrema, as well as for sympathetic NA tfap2a. By contrast, previous work revealed Fgf8 to be neurons, epibranchial placode derived visceral sensory involved in specification of NA neurons in the locus ganglia, and craniofacial and trunk crest derivatives.