Algorithms and Software Infrastructure for High-Performance Electronic Structure Based Simulations by Wenzhe Yu

Total Page:16

File Type:pdf, Size:1020Kb

Algorithms and Software Infrastructure for High-Performance Electronic Structure Based Simulations by Wenzhe Yu Algorithms and Software Infrastructure for High-Performance Electronic Structure Based Simulations by Wenzhe Yu Department of Mechanical Engineering and Materials Science Duke University Date: Approved: Volker Blum, advisor Olivier Delaire Jianfeng Lu Stefan Zauscher Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mechanical Engineering and Materials Science in the Graduate School of Duke University 2020 ABSTRACT Algorithms and Software Infrastructure for High-Performance Electronic Structure Based Simulations by Wenzhe Yu Department of Mechanical Engineering and Materials Science Duke University Date: Approved: Volker Blum, advisor Olivier Delaire Jianfeng Lu Stefan Zauscher An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mechanical Engineering and Materials Science in the Graduate School of Duke University 2020 Copyright c 2020 by Wenzhe Yu All rights reserved Abstract Computer simulations based on electronic structure theory, particularly Kohn-Sham density-functional theory (KS-DFT), are facilitating scientific discoveries across a broad range of disciplines such as chemistry, physics, and materials science. The tractable size of KS-DFT is often limited by an algebraic eigenproblem, the com- putational cost of which scales cubically with respect to the problem size. There have been continuous efforts to improve the performance of eigensolvers, and develop alternative algorithms that bypass the explicit solution of the eigenproblem. As the number of algorithms grows, it becomes increasingly difficult to comparatively as- sess their relative computational cost and implement them efficiently in electronic structure codes. The research in this dissertation explores the feasibility of integrating different electronic structure algorithms into a single framework, combining their strengths, assessing their accuracy and computational cost relative to each other, and under- standing their scope of applicability and optimal use regime. The research has led to an open-source software infrastructure, ELSI, providing the electronic structure com- munity with access to a variety of high-performance solver libraries through a unified software interface. ELSI supports and enhances conventional cubic scaling eigen- solvers, linear scaling density-matrix-based algorithms, and other reduced scaling methods in between, with reasonable default parameters for each of them. Flexible matrix formats and parallelization strategies adopted in ELSI fit the need of most, if not all, electronic structure codes. ELSI has been connected to four electronic structure code projects, allowing us to rigorously benchmark the performance of the solvers on an equal footing. Based on the results of a comprehensive set of bench- marks, we identify factors that strongly affect the efficiency of the solvers and regimes iv where conventional cubic scaling eigensolvers are outperformed by lower scaling al- gorithms. We propose an automatic decision layer that assists with the algorithm selection process. The ELSI infrastructure is stimulating the optimization of existing algorithms and the development of new ones. Following the worldwide trend of employing graphi- cal processing units (GPUs) in high-performance computing, we have developed and optimized GPU acceleration in the two-stage tridiagonalization eigensolver ELPA2, targeting distributed-memory, hybrid CPU-GPU architectures. A significant perfor- mance boost over the CPU-only version of ELPA2 is achieved, as demonstrated in routine KS-DFT simulations comprising thousands of atoms, for which a couple of GPU-equipped supercomputer nodes reach the throughput of some tens of conven- tional CPU supercomputer nodes. The GPU-accelerated ELPA2 solver can be used through the ELSI interface, smoothly and transparently bringing GPU support to all the electronic structure codes connected with ELSI. To reduce the computational cost of systems containing heavy elements, we propose a frozen core approximation with proper orthonormalization of the wavefunctions. This method is tolerant of er- rors due to the finite precision of numerical integrations in electronic structure codes. A considerable saving in the computational cost can be achieved, with the electron density, energies, and forces all matching the accuracy of all electron calculations. This research shows that by integrating a broad range of electronic structure algorithms into one infrastructure, new algorithmic developments and optimizations can take place at a faster pace. The outcome is open and beneficial to the entire electronic structure community, instead of being restricted to one particular code project. The ELSI infrastructure has already been utilized to accelerate large-scale electronic structure simulations, some of which were not feasible before. v Contents Abstract iv List of Figures x List of Tables xiii Acknowledgments xiv 1 Introduction 1 1.1 Emergence of Software Libraries in Electronic Structure Theory . .1 1.2 Cubic Scaling Wall in Kohn-Sham Density-Functional Theory . .5 1.3 Overview of This Dissertation . .7 2 Theoretical Background 10 2.1 Born-Oppenheimer Approximation . 11 2.2 Kohn-Sham Density-Functional Theory . 12 2.3 Practical Realization of KS-DFT . 14 2.3.1 Basis Sets . 14 2.3.2 Periodic Boundary Conditions . 16 2.3.3 Self-Consistent Field . 16 2.3.4 Computational Cost . 18 2.4 Eigensolvers (Diagonalization) . 19 2.4.1 Textbook Algorithm: One-Stage Tridiagonalization . 20 2.4.2 ELPA: Two-Stage Tridiagonalization . 21 2.4.3 EigenExa: Penta-Diagonalization . 22 2.4.4 SLEPc-SIPs: Shift-and-Invert Transformation . 23 vi 2.5 Density Matrix Solvers . 24 2.5.1 NTPoly: Density Matrix Purification . 25 2.5.2 libOMM: Orbital Minimization Method . 28 2.5.3 PEXSI: Pole Expansion and Selected Inversion . 29 3 Software Infrastructure for Scalable Solutions of the Kohn-Sham Problem: ELSI 32 3.1 Overview of the ELSI Software Infrastructure . 33 3.2 Programming Language . 33 3.3 Distributed Matrix Storage . 34 3.3.1 Distribution Scheme . 34 3.3.2 Local Storage Format . 35 3.4 Parallelization . 38 3.5 Implementation of the ELSI Interface . 41 3.5.1 Initialization, Reinitialization, and Finalization . 41 3.5.2 Solving Eigenvalues and Eigenvectors . 48 3.5.3 Computing Density Matrices . 54 3.5.4 Customizing the ELSI Interface and the Solvers . 61 3.5.5 Extrapolation of Wavefunctions and Density Matrices . 67 3.5.6 Parallel Matrix I/O . 70 3.6 Integration Into the Broader HPC Ecosystem . 71 3.7 Summary of Algorithmic Features . 72 4 Comparative Benchmark of Electronic Structure Solvers 74 4.1 Performance Benchmark With Varying System Size and Fixed Proces- sor Count . 75 vii 4.1.1 Benchmark Set I: Carbon Allotropes . 76 4.1.2 Benchmark Set II: Heavy Elements . 82 4.1.3 Benchmark Set III: 3D Structures . 84 4.2 Performance Benchmark with Varying Processor Count and Fixed Sys- tem Size . 87 4.3 Automatic Solver Selection . 87 4.4 Parallel Solution for Periodic Systems . 89 4.4.1 MULTI PROC Parallelization Mode . 90 4.4.2 SINGLE PROC Parallelization Mode . 92 4.5 Summary of Findings . 93 5 GPU-Accelerated Two-Stage Dense Eigensolver 96 5.1 GPU Acceleration of ELPA2 . 97 5.1.1 GPU Offloading via cuBLAS . 99 5.1.2 CUDA Kernel of Parallel Householder Transformations . 100 5.2 Performance and Scalability . 108 5.2.1 Overall Performance . 109 5.2.2 Performance of Individual Computational Steps . 113 5.2.3 Runtime Parameters . 115 5.3 Application in KS-DFT Calculations . 116 6 Normalized Frozen Core Approximation for All Electron Density- Functional Theory 120 6.1 Normalized Frozen Core Approximation . 121 6.2 Accuracy Analysis . 128 6.3 Performance Benchmark . 130 viii 7 Conclusions 135 Bibliography 139 ix List of Figures 1.1 The modular paradigm in electronic structure coding. .4 1.2 Simulation time of graphene supercells as a function of the number of atoms. .6 2.1 Key computational steps of Kohn-Sham density-functional theory (KS- DFT). 17 2.2 Computational steps of the two-stage tridiagonalization approach. 22 3.1 Schematic visualizations of 2D block-cyclic distribution, 1D block- cyclic distribution, and arbitrary distribution. 36 3.2 A 5 × 5 matrix stored in the dense format, the COO sparse format, and the CSC sparse format. 37 3.3 Parallel calculation of spin-polarized and periodic systems in ELSI. 39 3.4 Dependency graph of the ELSI interface. 72 4.1 Atomic structures of 1D carbon nanotube (CNT), 2D graphene, and 3D graphite. 77 4.2 Performance of key steps in ELPA, libOMM, and PEXSI for carbon nanotube models, graphene models, and graphite models. 79 4.3 Performance of key steps in ELPA and PEXSI for carbon nanotube models, graphene models, and graphite models. 80 4.4 Atomic structures of 1D Ge nanotube, 2D MoS2 monolayer, and 3D Cu2BaSnS4................................. 83 4.5 Performance of key steps in ELPA and PEXSI for Ge nanotube models, MoS2 monolayer models, and Cu2BaSnS4 models. 84 4.6 Atomic structures of water and silicon. 85 x 4.7 Performance of key steps in ELPA, PEXSI, and NTPoly for water models and silicon models. 86 4.8 Performance of key steps in ELPA, PEXSI, and NTPoly for water 41,472-atom model and silicon 31,250-atom model. 88 4.9 Performance comparison of two parallelization strategies in KS-DFT calculations of an 864-atom graphite model. 91 5.1 Visualization of the sweeps in the fourth stage of the bulge chasing procedure. 102 5.2 Visualization of Householder vectors v(i;j) and eigenvectors X involved in the tridiagonal-to-banded back-transformation. 103 5.3 Workflow of the Householder transformation CUDA kernel. 107 5.4 Timings of CPU-ELPA1, CPU-ELPA2, GPU-ELPA1, and GPU-ELPA2 for randomly generated matrices. 110 5.5 Timings of CPU-ELPA2, GPU-ELPA1, and GPU-ELPA2 for ran- domly generated matrices. 112 5.6 Timings of GPU-ELPA1 and GPU-ELPA2 as a function of the number of eigenvectors computed, for randomly generated matrices. 113 5.7 Timing decomposition of CPU-ELPA2 and GPU-ELPA2 for randomly generated matrices.
Recommended publications
  • Free and Open Source Software for Computational Chemistry Education
    Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching.
    [Show full text]
  • Introducing ONETEP: Linear-Scaling Density Functional Simulations on Parallel Computers Chris-Kriton Skylaris,A) Peter D
    THE JOURNAL OF CHEMICAL PHYSICS 122, 084119 ͑2005͒ Introducing ONETEP: Linear-scaling density functional simulations on parallel computers Chris-Kriton Skylaris,a) Peter D. Haynes, Arash A. Mostofi, and Mike C. Payne Theory of Condensed Matter, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom ͑Received 29 September 2004; accepted 4 November 2004; published online 23 February 2005͒ We present ONETEP ͑order-N electronic total energy package͒, a density functional program for parallel computers whose computational cost scales linearly with the number of atoms and the number of processors. ONETEP is based on our reformulation of the plane wave pseudopotential method which exploits the electronic localization that is inherent in systems with a nonvanishing band gap. We summarize the theoretical developments that enable the direct optimization of strictly localized quantities expressed in terms of a delocalized plane wave basis. These same localized quantities lead us to a physical way of dividing the computational effort among many processors to allow calculations to be performed efficiently on parallel supercomputers. We show with examples that ONETEP achieves excellent speedups with increasing numbers of processors and confirm that the time taken by ONETEP as a function of increasing number of atoms for a given number of processors is indeed linear. What distinguishes our approach is that the localization is achieved in a controlled and mathematically consistent manner so that ONETEP obtains the same accuracy as conventional cubic-scaling plane wave approaches and offers fast and stable convergence. We expect that calculations with ONETEP have the potential to provide quantitative theoretical predictions for problems involving thousands of atoms such as those often encountered in nanoscience and biophysics.
    [Show full text]
  • Natural Bond Orbital Analysis in the ONETEP Code: Applications to Large Protein Systems Louis P
    WWW.C-CHEM.ORG FULL PAPER Natural Bond Orbital Analysis in the ONETEP Code: Applications to Large Protein Systems Louis P. Lee,*[a] Daniel J. Cole,[a] Mike C. Payne,[a] and Chris-Kriton Skylaris[b] First principles electronic structure calculations are typically Generalized Wannier Functions of ONETEP to natural atomic performed in terms of molecular orbitals (or bands), providing a orbitals, NBO analysis can be performed within a localized straightforward theoretical avenue for approximations of region in such a way that ensures the results are identical to an increasing sophistication, but do not usually provide any analysis on the full system. We demonstrate the capabilities of qualitative chemical information about the system. We can this approach by performing illustrative studies of large derive such information via post-processing using natural bond proteins—namely, investigating changes in charge transfer orbital (NBO) analysis, which produces a chemical picture of between the heme group of myoglobin and its ligands with bonding in terms of localized Lewis-type bond and lone pair increasing system size and between a protein and its explicit orbitals that we can use to understand molecular structure and solvent, estimating the contribution of electronic delocalization interactions. We present NBO analysis of large-scale calculations to the stabilization of hydrogen bonds in the binding pocket of with the ONETEP linear-scaling density functional theory package, a drug-receptor complex, and observing, in situ, the n ! p* which we have interfaced with the NBO 5 analysis program. In hyperconjugative interactions between carbonyl groups that ONETEP calculations involving thousands of atoms, one is typically stabilize protein backbones.
    [Show full text]
  • Living at the Top of the Top500: Myopia from Being at the Bleeding Edge
    Living at the Top of the Top500: Myopia from Being at the Bleeding Edge Bronson Messer Oak Ridge Leadership Computing Facility & Theoretical Astrophysics Group Oak Ridge National Laboratory Department of Physics & Astronomy University of Tennessee Friday, July 1, 2011 Outline • Statements made without proof • OLCF’s Center for Accelerated Application Readiness • Speculations on task-based approaches for multiphysics applications in astrophysics (e.g. blowing up stars) 2 Friday, July 1, 2011 Riffing on Hank’s fable... 3 Friday, July 1, 2011 The Effects of Moore’s Law and Slacking 1 on Large Computations Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson, J.J. Charfman Steward Observatory, University of Arizona Abstract We show that, in the context of Moore’s Law, overall productivity can be increased for large enough computations by ‘slacking’orwaiting for some period of time before purchasing a computer and beginning the calculation. According to Moore’s Law, the computational power availableataparticular price doubles every 18 months. Therefore it is conceivable that for sufficiently large numerical calculations and fixed budgets, computing power will improve quickly enough that the calculation will finish faster if we wait until the available computing power is sufficiently better and start the calculation then. The Effects of Moore’s Law and Slacking 1Figureon Large 1: Computations Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson, J.J. Charfman 1 The Effects of Moore’sSteward Observatory, Law and University Slacking of Arizona on Large astro-ph/9912202 Computations Abstract Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson, We show that, in the context of Moore’s Law, overall productivity can be increased forJ.J.
    [Show full text]
  • A Deep Dive Into ASUS Solutions
    From DataCenters to Supercomputers A Deep Dive Into ASUS Solutions Christopher Liang / Server/WS Product manager ASUS is a global technology leader in the Who is ASUS? digital era. We focus on the mastery of technological innovation and design perfection. We’re very critical of our own work when it comes to only delivering consumers our very best. ASUS Worldwide ASUS has a strong presence in over 50 countries, with offices in Europe, Asia, Australia and New Zealand, the Americas, and South Africa. • > 11,000 employees worldwide (source : HR dept ) • > 3,100 R&D employees (source : HR dept ) • 900+ support centers worldwide (source : TSD dept ) Business Update 11 (estimated) ASUS closed 2011 on a high, with revenues around US$11.8 billion. As of September 2010, the brand is estimated to be worth US$1.285 billion*. 10.1 *2010 Top Taiwan Global Brand (Interbrand) ** Due to Q1-Q2 worldwide economy crisis 8.21 7.66** 6.99 5.087 3.783 3.010 2.081 Revenue US$ (billions) Leader in Performance and Reliability #1 Motherboard Since 1989, ASUS has shipped over 420 million motherboards. Placed end to end, they can form a chain long enough to circumnavigate the globe more than three times. #1 Windows-based Desktop PC Reliability Ranked most reliable Window’s based PC brand 2 years in a row by PCWorld. The 2011 PCWorld Reliability and Service survey was conducted with 63,000 PCWorld readers. 1. Though design thinking to provide cutting Why ASUS ? edge SPEC 2. BIOS – superior performance through increased functionality and upgradeability 3.
    [Show full text]
  • Density Functional Theory (DFT)
    Herramientas mecano-cuánticas basadas en DFT para el estudio de moléculas y materiales en Materials Studio 7.0 Javier Ramos Biophysics of Macromolecular Systems group (BIOPHYM) Departamento de Física Macromolecular Instituto de Estructura de la Materia – CSIC [email protected] Webinar, 26 de Junio 2014 Anteriores webinars Como conseguir los videos y las presentaciones de anteriores webminars: Linkedin: Grupo de Química Computacional http://www.linkedin.com/groups/Química-computacional-7487634 Índice Density Functional Theory (DFT) The Jacob’s ladder DFT modules in Maretials Studio DMOL3, CASTEP and ONETEP XC functionals Basis functions Interfaces in Materials Studio Tasks Properties Example: n-butane conformations Density Functional Theory (DFT) DFT is built around the premise that the energy of an electronic system can be defined in terms of its electron probability density (ρ). (Hohenberg-Kohn Theorem) E 0 [ 0 ] Te [ 0 ] E ne [ 0 ] E ee [ 0 ] (easy) Kinetic Energy for ????? noninteracting (r )v (r ) dr electrons(easy) 1 E[]()()[]1 r r d r d r E e e2 1 2 1 2 X C r12 Classic Term(Coulomb) Non-classic Kohn-Sham orbitals Exchange & By minimizing the total energy functional applying the variational principle it is Correlation possible to get the SCF equations (Kohn-Sham) The Jacob’s Ladder Accurate form of XC potential Meta GGA Empirical (Fitting to Non-Empirical Generalized Gradient Approx. atomic properties) (physics rules) Local Density Approximation DFT modules in Materials Studio DMol3: Combine computational speed with the accuracy of quantum mechanical methods to predict materials properties reliably and quickly CASTEP: CASTEP offers simulation capabilities not found elsewhere, such as accurate prediction of phonon spectra, dielectric constants, and optical properties.
    [Show full text]
  • Compact Orbitals Enable Low-Cost Linear-Scaling Ab Initio Molecular Dynamics for Weakly-Interacting Systems Hayden Scheiber,1, A) Yifei Shi,1 and Rustam Z
    Compact orbitals enable low-cost linear-scaling ab initio molecular dynamics for weakly-interacting systems Hayden Scheiber,1, a) Yifei Shi,1 and Rustam Z. Khaliullin1, b) Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada Today, ab initio molecular dynamics (AIMD) relies on the locality of one-electron density matrices to achieve linear growth of computation time with systems size, crucial in large-scale simulations. While Kohn-Sham orbitals strictly localized within predefined radii can offer substantial computational advantages over density matrices, such compact orbitals are not used in AIMD because a compact representation of the electronic ground state is difficult to find. Here, a robust method for maintaining compact orbitals close to the ground state is coupled with a modified Langevin integrator to produce stable nuclear dynamics for molecular and ionic systems. This eliminates a density matrix optimization and enables first orbital-only linear-scaling AIMD. An application to liquid water demonstrates that low computational overhead of the new method makes it ideal for routine medium-scale simulations while its linear-scaling complexity allows to extend first- principle studies of molecular systems to completely new physical phenomena on previously inaccessible length scales. Since the unification of molecular dynamics and den- LS methods restrict their use in dynamical simulations sity functional theory (DFT)1, ab initio molecular dy- to very short time scales, systems of low dimensions, namics (AIMD) has become an important tool to study and low-quality minimal basis sets6,18–20. On typical processes in molecules and materials. Unfortunately, the length and time scales required in practical and accurate computational cost of the conventional Kohn-Sham (KS) AIMD simulations, LS DFT still cannot compete with DFT grows cubically with the number of atoms, which the straightforward low-cost cubically-scaling KS DFT.
    [Show full text]
  • An Overview on the Libxc Library of Density Functional Approximations
    An overview on the Libxc library of density functional approximations Susi Lehtola Molecular Sciences Software Institute at Virginia Tech 2 June 2021 Outline Why Libxc? Recap on DFT What is Libxc? Using Libxc A look under the hood Wrapup GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 2/28 Why Libxc? There are many approximations for the exchange-correlation functional. But, most programs I ... only implement a handful (sometimes 5, typically 10-15) I ... and the implementations may be buggy / non-standard GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 3/28 Why Libxc, cont'd This leads to issues with reproducibility I chemists and physicists do not traditionally use the same functionals! Outdated(?) stereotype: B3LYP vs PBE I how to reproduce a calculation performed with another code? GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 4/28 Why Libxc, cont'd The issue is compounded by the need for backwards and forwards compatibility: how can one I reproduce old calculations from the literature done with a now-obsolete functional (possibly with a program that is proprietary / no longer available)? I use a newly developed functional in an old program? GPAW 2021: Users' and Developers' Meeting Susi Lehtola Why Libxc? 5/28 Why Libxc, cont'd A standard implementation is beneficial! I no need to keep reinventing (and rebuilding) the wheel I use same collection of density functionals in all programs I new functionals only need to be implemented in one place I broken/buggy functionals only need to be fixed in one place I same implementation can be used across numerical approaches, e.g.
    [Show full text]
  • Quantum Chemistry (QC) on Gpus Feb
    Quantum Chemistry (QC) on GPUs Feb. 2, 2017 Overview of Life & Material Accelerated Apps MD: All key codes are GPU-accelerated QC: All key codes are ported or optimizing Great multi-GPU performance Focus on using GPU-accelerated math libraries, OpenACC directives Focus on dense (up to 16) GPU nodes &/or large # of GPU nodes GPU-accelerated and available today: ACEMD*, AMBER (PMEMD)*, BAND, CHARMM, DESMOND, ESPResso, ABINIT, ACES III, ADF, BigDFT, CP2K, GAMESS, GAMESS- Folding@Home, GPUgrid.net, GROMACS, HALMD, HOOMD-Blue*, UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS, MOPAC2012, LAMMPS, Lattice Microbes*, mdcore, MELD, miniMD, NAMD, NWChem, OCTOPUS*, PEtot, QUICK, Q-Chem, QMCPack, OpenMM, PolyFTS, SOP-GPU* & more Quantum Espresso/PWscf, QUICK, TeraChem* Active GPU acceleration projects: CASTEP, GAMESS, Gaussian, ONETEP, Quantum Supercharger Library*, VASP & more green* = application where >90% of the workload is on GPU 2 MD vs. QC on GPUs “Classical” Molecular Dynamics Quantum Chemistry (MO, PW, DFT, Semi-Emp) Simulates positions of atoms over time; Calculates electronic properties; chemical-biological or ground state, excited states, spectral properties, chemical-material behaviors making/breaking bonds, physical properties Forces calculated from simple empirical formulas Forces derived from electron wave function (bond rearrangement generally forbidden) (bond rearrangement OK, e.g., bond energies) Up to millions of atoms Up to a few thousand atoms Solvent included without difficulty Generally in a vacuum but if needed, solvent treated classically
    [Show full text]
  • Introduction to DFT and the Plane-Wave Pseudopotential Method
    Introduction to DFT and the plane-wave pseudopotential method Keith Refson STFC Rutherford Appleton Laboratory Chilton, Didcot, OXON OX11 0QX 23 Apr 2014 Parallel Materials Modelling Packages @ EPCC 1 / 55 Introduction Synopsis Motivation Some ab initio codes Quantum-mechanical approaches Density Functional Theory Electronic Structure of Condensed Phases Total-energy calculations Introduction Basis sets Plane-waves and Pseudopotentials How to solve the equations Parallel Materials Modelling Packages @ EPCC 2 / 55 Synopsis Introduction A guided tour inside the “black box” of ab-initio simulation. Synopsis • Motivation • The rise of quantum-mechanical simulations. Some ab initio codes Wavefunction-based theory • Density-functional theory (DFT) Quantum-mechanical • approaches Quantum theory in periodic boundaries • Plane-wave and other basis sets Density Functional • Theory SCF solvers • Molecular Dynamics Electronic Structure of Condensed Phases Recommended Reading and Further Study Total-energy calculations • Basis sets Jorge Kohanoff Electronic Structure Calculations for Solids and Molecules, Plane-waves and Theory and Computational Methods, Cambridge, ISBN-13: 9780521815918 Pseudopotentials • Dominik Marx, J¨urg Hutter Ab Initio Molecular Dynamics: Basic Theory and How to solve the Advanced Methods Cambridge University Press, ISBN: 0521898633 equations • Richard M. Martin Electronic Structure: Basic Theory and Practical Methods: Basic Theory and Practical Density Functional Approaches Vol 1 Cambridge University Press, ISBN: 0521782856
    [Show full text]
  • What's New in Biovia Materials Studio 2020
    WHAT’S NEW IN BIOVIA MATERIALS STUDIO 2020 Datasheet BIOVIA Materials Studio 2020 is the latest release of BIOVIA’s predictive science tools for chemistry and materials science research. Materials Studio empowers researchers to understand the relationships between a material’s mo- lecular or crystal structure and its properties in order to make more informed decisions about materials research and development. More often than not materials performance is influenced by phenomena at multiple scales. Scientists using Materials Studio 2020 have an extensive suite of world class solvers and parameter sets operating from atoms to microscale for simulating more materials and more properties than ever before. Furthermore, the predicted properties can now be used in multi-physics modeling and in systems modeling software such as SIMULIA Abaqus and CATIA Dymola to predict macroscopic behaviors. In this way multiscale simulations can be used to solve some of the toughest pro- blems in materials design and product optimization. BETTER MATERIALS - BETTER BATTERIES Safe, fast charging batteries with high energy density and long life are urgently needed for a host of applications - not least for the electrification of all modes of transportation as an alternative to fossil fuel energy sources. Battery design relies on a complex interplay between thermal, mechanical and chemical processes from the smallest scales of the material (electronic structure) through to the geometry of the battery cell and pack design. Improvements to the component materials used in batteries and capacitors are fundamental to providing the advances in performance needed. Materials Studio provides new functionality to enable the simula- tion of key materials parameters for both liquid electrolytes and electrode components.
    [Show full text]
  • Density-Functional Theory of Atoms and Molecules • W
    3.320: Lecture 7 (Feb 24 2005) DENSITYDENSITY--FUNCTIONALFUNCTIONAL THEORY,THEORY, ANDAND DENSITYDENSITY--FUNCTIONALFUNCTIONAL PRACTICEPRACTICE Feb 24 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari Hartree-Fock Equations r rr ϕϕαβ()rr11() L ϕν()r1 ϕϕ()rrr ()rrϕ()r rr r 1 αβ22L ν2 ψ (,rr12,...,rn )= n! MMOM r rr ϕϕαβ()rrnn()L ϕν()rn ⎡⎤1 2 r r r ⎢⎥−∇iI+∑VR()−riϕλ ()ri + ⎣⎦2 I ⎡⎤1 ϕϕ* ()rrrr()drrϕ ()rr − ⎢⎥∑ ∫ µµjjr r jλ i ⎣⎦⎢⎥µ ||rrji− ⎡⎤1 ϕϕ* ()rdrrϕϕ()rrr r(rr)= ε(r) ∑ ⎢⎥∫ µµj rrλ j j i λ i µ ⎣⎦⎢⎥||rrj − i Feb 24 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari Image removed for copyright reasons. Screenshot of online article. “Nobel Focus: Chemistry by Computer.” Physical Review Focus, 21 October 1998. http://focus.aps.org/story/v2/st19 Feb 24 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari The Thomas-Fermi approach • Let’s try to find out an expression for the energy as a function of the charge density • E=kinetic+external+el.-el. • Kinetic is the tricky term: how do we get the curvature of a wavefunction from the charge density ? • Answer: local density approximation Feb 24 2005 3.320 Atomistic Modeling of Materials -- Gerbrand Ceder and Nicola Marzari Local Density Approximation • We take the kinetic energy density at every point to correspond to the kinetic energy density of the homogenous electron gas 5 T(rr) = Aρ 3 (rr) 5 1 ρ(rr)ρ(rr ) E [ρ] = A ρ 3 (rr)drr + ρ(rr)v (rr)drr + 1 2 drrdrr Th−Fe ∫ ∫ ext ∫∫ r r 1 2 2 | r1 − r2 | Feb 24 2005
    [Show full text]