9(2) September 2020 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sphaerodactylus Samanensis, Cochran, 1932) with Comments on Its Morphological Variation and Conservation Status
New distributional records of the Samana least gecko (Sphaerodactylus samanensis, Cochran, 1932) with comments on its morphological variation and conservation status Germán Chávez1,2, Miguel A. Landestoy T3, Gail S. Ross4 and Joaquín A. Ugarte-Núñez5 1 Instituto Peruano de Herpetología, Lima, Perú 2 División de Herpetología, CORBIDI, Lima, Perú 3 Escuela de Biología, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic 4 Independent Researcher, Elko, NV, USA 5 Knight Piésold Consulting, Lima, Peru ABSTRACT We report here five new localities across the distribution of the lizard Sphaerodactylus samanensis, extending its current geographic range to the west, in the Cordillera Central of Hispaniola. We also report phenotypic variation in the color pattern and scutellation on throat and pelvic regions of males from both eastern and western populations, which is described below. Furthermore, based on these new data, we confirm that the species is not fitting in its current IUCN category, and in consequence propose updating its conservation status. Subjects Biodiversity, Biogeography, Conservation Biology, Ecology, Zoology Submitted 5 August 2020 Keywords New localities, Geographic range, Phenotypic variation, IUCN category, Conservation Accepted 31 October 2020 status Published 11 January 2021 Corresponding author Joaquín A. INTRODUCTION Ugarte-Núñez, Lizards of the genus Sphaerodactylus (107 recognized species, Uetz, Freed & Hosek, 2020), [email protected], [email protected] have diversified remarkably on Caribbean islands, and occur in Central and Northern Academic editor South America and in the Pacific Island of Cocos (Hass, 1991; Henderson & Powell, 2009; Richard Schuster Hedges et al., 2019; Hedges, 2020). This is a clade of small geckos (geckolet) containing also Additional Information and one of the smallest amniote vertebrates in the world with a maximum snout-vent length of Declarations can be found on 18 mm (Hedges & Thomas, 2001). -
1919 Barbour the Herpetology of Cuba.Pdf
5 2^usniuc^££itt£j IK: Bofji^D ^Jae HARVARD UNIVERSITY. I LIBRARY OF THE MUSEUM OF COMPARATIVE ZOOLOGY GIFT OF jflDemoirs of tbe /IDuseum of Comparattve ZooloQ? AT HARVARD COLLEGE. Vol. XLVII. No. 2. THE HRKFETOLOGY OF CUBA. BY THOMAS BARBOUR AND CHARLES T. RAMSDEN. WITH FIFTEEN PLATES. CAMBRIDGE, U. S. A.: IPrlnteb for tbe jIDuseum, May, 1919. i /IDemotta of tbe /iDuseum of Comparattve Zoology AT HARVARD COLLEGE. Vol. XLVII. No. 2. (./,!', THE HERPETOLOGY OF CUBA. BY THOMAS BARBOUR AND CHARLES T. RAMSDEN. WITH FIFTEEN PLATES. CAMBRIDGE, U. S. A.: Iprtnteft for tbe /IDuseum. May, 1919. {^A CONTENTS. Page Page Introduction 73 Gonatodes fuscus (Hallowell), Synopsis of the species 73 Plate 1, fig. 5 114 Species erroneously recorded .... 75 Tarentola cubana (Gundlach & Geographic note 78 Peters), Plate 14, fig. 1 . 116 Faiinal relationships 79 Hemidactylus mabouia (Moreau Check list of the species 83 de Jonnes) 117 Systematic account of the species . 93 Key to the species of Sphaerodactylus 1 19 Keys 93 Sphaerodactylus torrei Barbour, Amphibia Salientia 93 Plate 2, fig. 1, 2 119 Key to the genera 93 elegans MacLea>', Plate 2, fig. 3 121 Hylidae 93 cinereus MacLeay, Plate 2, fig. 4 122 Hyla septentrionalis Boulenger, nigropunctatus Gray, Plate 3, 1 Plate 1, fig. 1 93 fig. 124 Bufonidae 95 notatus Baird, Plate 3, fig. 2 125 Key to the species of Bufo ... 95 *scaber Barbour & Ramsden Plate Bufo longinasus Stejneger, Plate 3, fig. 3 126 13, fig. 1 ....... 95 Iguanidae 128 ramsdeni Barbour, Plate 1, fig. 2 96 Chamaeleolis chamaeleontides peltacephalus Tschudi, Plate 13, (Dmneril & Bibron) Plate 14, fig. -
Checklist Reptile and Amphibian
To report sightings, contact: Natural Resources Coordinator 980-314-1119 www.parkandrec.com REPTILE AND AMPHIBIAN CHECKLIST Mecklenburg County, NC: 66 species Mole Salamanders ☐ Pickerel Frog ☐ Ground Skink (Scincella lateralis) ☐ Spotted Salamander (Rana (Lithobates) palustris) Whiptails (Ambystoma maculatum) ☐ Southern Leopard Frog ☐ Six-lined Racerunner ☐ Marbled Salamander (Rana (Lithobates) sphenocephala (Aspidoscelis sexlineata) (Ambystoma opacum) (sphenocephalus)) Nonvenomous Snakes Lungless Salamanders Snapping Turtles ☐ Eastern Worm Snake ☐ Dusky Salamander (Desmognathus fuscus) ☐ Common Snapping Turtle (Carphophis amoenus) ☐ Southern Two-lined Salamander (Chelydra serpentina) ☐ Scarlet Snake1 (Cemophora coccinea) (Eurycea cirrigera) Box and Water Turtles ☐ Black Racer (Coluber constrictor) ☐ Three-lined Salamander ☐ Northern Painted Turtle ☐ Ring-necked Snake (Eurycea guttolineata) (Chrysemys picta) (Diadophis punctatus) ☐ Spring Salamander ☐ Spotted Turtle2, 6 (Clemmys guttata) ☐ Corn Snake (Pantherophis guttatus) (Gyrinophilus porphyriticus) ☐ River Cooter (Pseudemys concinna) ☐ Rat Snake (Pantherophis alleghaniensis) ☐ Slimy Salamander (Plethodon glutinosus) ☐ Eastern Box Turtle (Terrapene carolina) ☐ Eastern Hognose Snake ☐ Mud Salamander (Pseudotriton montanus) ☐ Yellow-bellied Slider (Trachemys scripta) (Heterodon platirhinos) ☐ Red Salamander (Pseudotriton ruber) ☐ Red-eared Slider3 ☐ Mole Kingsnake Newts (Trachemys scripta elegans) (Lampropeltis calligaster) ☐ Red-spotted Newt Mud and Musk Turtles ☐ Eastern Kingsnake -
Tail Bifurcation in Plestiodon Skiltonianus
Herpetology Notes, volume 13: 343-345 (2020) (published online on 23 April 2020) Tail bifurcation in Plestiodon skiltonianus Danielle C. Miles1,*, Chasey L. Danser1, and Kevin T. Shoemaker1 Plestiodon skiltonianus (Smith, 2005), commonly The majority of tail bifurcations in other lizard species known as the Western Skink, is a smooth-scaled species are likely the result of abnormal tail regeneration after with a range from southern Idaho to northern Arizona in a lizard sheds its tail in response to a threat and are the Western United States (Tanner, 1957). The Western common across several lizard families (Clause et al. Skink is a part of the evolutionarily related skiltonianus 2006; Conzendey et al. 2013; Dudek & Ekner-Grzyb, group of lizards, of which none have previous records of 2014; Pelegrin & Leão, 2016; Tamar et al. 2013). Caudal tail bifurcation that we could find (Richmond & Reeder, 2002). Tail bifurcation is found in all of the major lizard groups and the most closely related species with this recorded observation is Plestiodon inexpectatus (Brandley et al, 2012; Koleska et al, 2017; Mitchell et al, 2012). On July 13 2019, one P. skiltonianus with a bifurcated tail was captured in a medium Sherman aluminium box trap designed for the live capture of small mammals that had been baited with bird seed and filled with biodegradable batting. As the traps were being collected at 17:00 PST, the malformed individual was found in the back of a trap, though the trap had not been triggered by its weight. The field site is at 39.4993°N, -117.0053°E on United States Forest Service land in Lander County northeast of Austin, Nevada, USA at an elevation of 1920 meters. -
(Tantilla Oolitica) in Miami-Dade and Monroe Counties, Florida
Assessment of the Status and Distribution of the Endemic Rim Rock Crowned Snake (Tantilla oolitica) in Miami-Dade and Monroe Counties, Florida Final Report Grant Agreement #401817G006 Kirsten N. Hines and Keith A. Bradley July 10, 2009 Submitted by: The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, FL 33170 George D. Gann, Executive Director Submitted to: Paula Halupa Fish and Wildlife Biologist U.S. Fish and Wildlife Service 1339 20th Street Vero Beach, FL 32960 1 Project Background: The rim rock crowned snake (Tantilla oolitica) is one of three species of small, burrowing snakes within the genus Tantilla found in Florida. Of the more than 40 species of this genus extending from the southeastern United States down to northern Argentina in South America, T. oolitica has the most limited distribution (Wilson 1982, Scott 2004). Confined to the Miami Rock Ridge in southeastern Miami-Dade County and parts of the Florida Keys in Monroe County, this species has been greatly affected by the rapid urbanization of this area. By 1975 it had already made the Florida State list of threatened species and it is currently considered a candidate for the Federal Endangered Species List. Traditionally, T. oolitica habitat included rockland hammocks and pine rocklands. Less than 2% of the pine rocklands on the Miami Rock Ridge currently remain (Snyder et. al 1990, USFWS 1999) and rockland hammocks both in Miami-Dade County and throughout the Florida Keys have been reduced to less than half their original extent and continue to face threat of development (Enge et. al 1997, USFWS 1999). -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Lizard ID Guide
Lizards of Anderson County, TN Lizards are extraordinary gifts of nature. World-wide there are close to 6,000 species. The United States is home to more than100 native species, along with many exotic species that have become established, especially in Florida. Tennessee has 9 species, 6 of which are listed for Anderson County. Some are fairly widespread and easy to observe, such as the Common Five-lined Skink below. Unfortunately, the liberal use of pesticides, combined with predation by free roaming house cats have taken a heavy toll on our lizard populations. Most lizards are insect eating machines and their ecological services should be promoted through backyard and schoolyard wildlife habitat projects. Lizard watching is great fun, and over time, observers can gain interesting insights into lizard behavior. Your backyard may be a good place to start your lizarding career. This guide will be helpful for identifying our local lizards and will also provide you with examples of lizard behaviors to observe. Some species must be captured—this can be challenging—to insure accurate identification. Please see the back page for more resources. Lizarding Lizard watching, often referred to as lizarding, will likely never be as popular as bird watching (birding), but there is an advantage to being a “lizarder.” Unlike birders, you don’t need to be an early riser. Bright sunny days with warm temperatures are the keys for successful lizarding, but like birding, close-up binoculars are helpful. A lizard’s life centers around three performance activities: 1) avoiding predators, 2) feeding, and 3) reproduction. Lizard performance is all about optimal body temperature. -
Response of Reptile and Amphibian Communities to the Reintroduction of Fire T in an Oak/Hickory Forest ⁎ Steven J
Forest Ecology and Management 428 (2018) 1–13 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Response of reptile and amphibian communities to the reintroduction of fire T in an oak/hickory forest ⁎ Steven J. Hromadaa, , Christopher A.F. Howeyb,c, Matthew B. Dickinsond, Roger W. Perrye, Willem M. Roosenburgc, C.M. Giengera a Department of Biology and Center of Excellence for Field Biology, Austin Peay State University, Clarksville, TN 37040, United States b Biology Department, University of Scranton, Scranton, PA 18510, United States c Ohio Center for Ecology and Evolutionary Studies, Department of Biological Sciences, Ohio University, Athens, OH 45701, United States d Northern Research Station, U.S. Forest Service, Delaware, OH 43015, United States e Southern Research Station, U.S. Forest Service, Hot Springs, AR 71902, United States ABSTRACT Fire can have diverse effects on ecosystems, including direct effects through injury and mortality and indirect effects through changes to available resources within the environment. Changes in vegetation structure suchasa decrease in canopy cover or an increase in herbaceous cover from prescribed fire can increase availability of preferred microhabitats for some species while simultaneously reducing preferred conditions for others. We examined the responses of herpetofaunal communities to prescribed fires in an oak/hickory forest in western Kentucky. Prescribed fires were applied twice to a 1000-ha area one and four years prior to sampling, causing changes in vegetation structure. Herpetofaunal communities were sampled using drift fences, and vegetation attributes were sampled via transects in four burned and four unburned plots. Differences in reptile community structure correlated with variation in vegetation structure largely created by fires. -
Ctenosaura Similis) on the on 5 May 2013 at 1406 H, We Observed an Adult Female Southwestern Coast of Florida
WWW.IRCF.ORG/REPTILESANDAMPHIBIANSJOURNALTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSIRCF REPTILES • VOL15, N&O AMPHIBIANS4 • DEC 2008 189 • 21(2):69–70 • JUN 2014 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES The . NonnativeChasing Bullsnakes (Pituophis catenifer sayi ) inBlack Wisconsin: Spiny-tailed Iguana, On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: CtenosauraA Hypothetical Excursion ............................................................................................................................similis Gray 1831 (Squamata:Robert W. Henderson 198 RESEARCHIguanidae), ARTICLES Preying upon the . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida Native ............................................. SoutheasternBrian J. Camposano, Kenneth L. Krysko, Kevin Five-lined M. Enge, Ellen M. Donlan, and Michael GranatoskySkink, 212 CONSERVATION ALERT Plestiodon. World’s Mammals in Crisis ............................................................................................................................................................. inexpectatus Taylor 1932 220 . More Than Mammals ..................................................................................................................................................................... -
070403/EU XXVII. GP Eingelangt Am 28/07/21
070403/EU XXVII. GP Eingelangt am 28/07/21 Council of the European Union Brussels, 28 July 2021 (OR. en) 11099/21 ADD 1 ENV 557 WTO 188 COVER NOTE From: European Commission date of receipt: 27 July 2021 To: General Secretariat of the Council No. Cion doc.: D074372/02 - Annex 1 Subject: ANNEX to the COMMISSION REGULATION (EU) …/… amending Council Regulation (EC) No 338/97 on the protection of species of wild fauna and flora by regulating trade therein Delegations will find attached document D074372/02 - Annex 1. Encl.: D074372/02 - Annex 1 11099/21 ADD 1 CSM/am TREE.1.A EN www.parlament.gv.at EUROPEAN COMMISSION Brussels, XXX D074372/02 […](2021) XXX draft ANNEX 1 ANNEX to the COMMISSION REGULATION (EU) …/… amending Council Regulation (EC) No 338/97 on the protection of species of wild fauna and flora by regulating trade therein EN EN www.parlament.gv.at ‘ANNEX […] Notes on interpretation of Annexes A, B, C and D 1. Species included in Annexes A, B, C and D are referred to: (a) by the name of the species; or (b) as being all of the species included in a higher taxon or designated part thereof. 2. The abbreviation ‘spp.’ is used to denote all species of a higher taxon. 3. Other references to taxa higher than species are for the purposes of information or classification only. 4. Species printed in bold in Annex A are listed there in consistency with their protection as provided for by Directive 2009/147/EC of the European Parliament and of the Council1 or Council Directive 92/43/EEC2. -
2019/2117 of 29 November 2019 Amending Council
02019R2117 — EN — 11.12.2019 — 000.001 — 1 This text is meant purely as a documentation tool and has no legal effect. The Union's institutions do not assume any liability for its contents. The authentic versions of the relevant acts, including their preambles, are those published in the Official Journal of the European Union and available in EUR-Lex. Those official texts are directly accessible through the links embedded in this document ►B COMMISSION REGULATION (EU) 2019/2117 of 29 November 2019 amending Council Regulation (EC) No 338/97 on the protection of species of wild fauna and flora by regulating trade therein (OJ L 320, 11.12.2019, p. 13) Corrected by: ►C1 Corrigendum, OJ L 330, 20.12.2019, p. 104 (2019/2117) 02019R2117 — EN — 11.12.2019 — 000.001 — 2 ▼B COMMISSION REGULATION (EU) 2019/2117 of 29 November 2019 amending Council Regulation (EC) No 338/97 on the protection of species of wild fauna and flora by regulating trade therein Article 1 The Annex to Regulation (EC) No 338/97 is replaced by the text set out in the Annex to this Regulation. Article 2 This Regulation shall enter into force on the third day following that of its publication in the Official Journal of the European Union. This Regulation shall be binding in its entirety and directly applicable in all Member States. 02019R2117 — EN — 11.12.2019 — 000.001 — 3 ▼B ANNEX Notes on interpretation of Annexes A, B, C and D 1. Species included in Annexes A, B, C and D are referred to: (a) by the name of the species; or (b) as being all of the species included in a higher taxon or designated part thereof. -
The Ecology of Lizard Reproductive Output
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) ••, ••–•• RESEARCH The ecology of lizard reproductive PAPER outputgeb_700 1..11 Shai Meiri1*, James H. Brown2 and Richard M. Sibly3 1Department of Zoology, Tel Aviv University, ABSTRACT 69978 Tel Aviv, Israel, 2Department of Biology, Aim We provide a new quantitative analysis of lizard reproductive ecology. Com- University of New Mexico, Albuquerque, NM 87131, USA and Santa Fe Institute, 1399 Hyde parative studies of lizard reproduction to date have usually considered life-history Park Road, Santa Fe, NM 87501, USA, 3School components separately. Instead, we examine the rate of production (productivity of Biological Sciences, University of Reading, hereafter) calculated as the total mass of offspring produced in a year. We test ReadingRG6 6AS, UK whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environ- mental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phyloge- netic relationships and multiple life history and ecological variables from the lit- erature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size.