Internet of Things Security Encryption Capacity Comparison for Iot Based on Arduino Devices

Total Page:16

File Type:pdf, Size:1020Kb

Internet of Things Security Encryption Capacity Comparison for Iot Based on Arduino Devices Master of Science in Computer Science June 2020 Internet of Things Security Encryption Capacity Comparison for IoT based on Arduino Devices Olaide Jamiu Olalekan Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. The author declare that he is the sole author of this thesis and that he had not used any sources other than those listed in the bibliography and identified as references. He further declares that he has not submitted this thesis at any other institution to obtain a degree. Contact Information: Author: Jamiu Olalekan Olaide [email protected] University advisor: Anders Carlsson Department of Computer Science and Engineering Faculty of Computing Blekinge Institute of Technology Internet : www.bth.se SE-371 79 Karlskrona, Sweden Phone : +46 455 38 50 00 Fax : +46 455 38 50 57 ABSTRACT Background: IoT is a system of devices with unique identifiers (UIDs) and can transfer data over a network. They are widely used in various sectors such as Health, Commercial, Transport, etc. However, most IoT devices are being exploited, as it is being recorded for the past few years, on how vulnerable users can be if they have any of these devices in their network. Arduino is one of the most commonly used IoT devices, notably products such as Uno and Mega2560 are highly acceptable in the market and the research world. It is important to know how these devices react to security measures such as encryptions. Objectives: To carry out a theoretical study and performance comparison on Arduino devices and standard cryptographic encryption. The devices and encryption used are Arduino Uno, Mega2560 and AES, XXTEA respectively. Methods: To gain knowledge and information about the selected algorithms and devices, a literature analysis was adopted. An experiment was also carried out to get measurements and record how the algorithms perform on these devices. Results: The literature analysis provides the design similarities and differences of the algorithms and devices. The controlled experiment shows the measurement of the stated encryptions on the Arduino devices. Conclusions: The conclusion is that Arduino Uno and Mega2560 have a similar design but differ in their memory allocation. The AES and XXTEA algorithm have different designs and performances. The result in the controlled experiment shows that the XXTEA outperforms the AES algorithm in terms of Memory and Time consumption significantly in both devices. The Arduino Uno device is slightly ahead of Mega2560 when comparing the result. Keywords: Encryption, Arduino Microcontroller, Security, Similarities, Performance. iii ACKNOWLEDGMENT I would like to give thanks to my teachers, colleagues, and friends for making this master's degree fun. Special thanks to my supervisors Anders Carlsson and Maryna Yevdokymenko, for their guidance, continuous support and their constant and timely assistance throughout my thesis. It would not have been possible to finish this thesis without them. I would also like to give special thanks to Adamov Oleksandr, Amal Mersni for their support and criticism. Also, a special thanks to Prof Arkadii Snihurov for his encouragement, pieces of advice, and useful feedback. I would like to thank my wonderful family and friends for their emotional support, motivation, prayers, and constant encouragement throughout my entire program. iv LIST OF ABBREVIATIONS AAA Authentication, Authorization, and Accounting AES Advanced Encryption Standard AVR Automatic Voltage Regulator CBC Chaining Block Cipher CIA Confidentiality, Integrity, and Availability CPU Central Processing Unit ECB Electronic Code Book EEPROM Electrical Erasable Programmable Read-only Memory IDE Integrated Development Environment IEEE Institute of Electrical Electronic Engineers IoT Internet of Things IV Initialization Vector RAM Random Access Memory ROM Read-only Memory RSA Rivest–Shamir–Adleman SPN Substitution- Permutation Network SRAM Static Random Access Memory TEA Tiny Encryption Algorithm TX/RX Transmitting and Receiving Pins UFN Unbalanced Feistel Network WSN Wireless Sensor Network XXTEA Extended Tiny Encryption Algorithm v LIST OF TABLES Table 3.1: Comparison between Arduino and other IoT devices ............................................... 9 Table 3.2: AES Encryption Round ........................................................................................... 11 Table 4.1: Detail of the Experiment design. ............................................................................. 16 Table 5.1: Comparison of Arduino devices ............................................................................. 19 Table 5.2: XXTEA and AES Properties ................................................................................... 20 Table 5.3: Ranking of the encryption based on Time and Memory ......................................... 21 Table 5.4: Accumulated data for memory. ............................................................................... 25 Table 5.5: Data computation of Time consumption ................................................................. 28 Table 5.6: Summary of Mann Whitney U Test for both Memory and Time ........................... 30 Table A.1: Definition of Mann Whitney U test parameters ..................................................... 45 Table A.2: Test for Memory .................................................................................................... 45 Table A.3: Test for Time .......................................................................................................... 48 vi LIST OF FIGURES Figure 1.1: IoT connectivity. Figure adapted from figure 1 in [1] ............................................ 1 Figure 3.1: Arduino Uno board[15] ........................................................................................... 8 Figure 3.2: Arduino Mega2560 board.[15] ................................................................................ 8 Figure 3.3: Arduino console Sketch. Figure adapted from the IDE. .......................................... 7 Figure 3.4: ECB mode of operation. Figure adapted from [51] ............................................... 10 Figure 3.5: The CBC encryption and decryption. Figure adapted from [51] ........................... 11 Figure 3.6: AES Algorithm[13] ............................................................................................... 12 Figure 3.7: One round of Corrected TEA Block ...................................................................... 13 Figure 5.1: Graphical illustration of the SRAM memory (16byte) ......................................... 22 Figure 5.2: Flash memory graphical illustration. (16byte) ....................................................... 22 Figure 5.3: SRAM memory graphical illustration for 24 bytes ............................................... 23 Figure 5.4: Flash Memory graphical illustration for 24 bytes .................................................. 23 Figure 5.5: SRAM memory graphical illustration for 32byte .................................................. 24 Figure 5.6: Flash Memory Graphical illustration for 32byte. .................................................. 24 Figure 5.7: Graphical Illustration of Uno Time consumption (16bytes) .................................. 25 Figure 5.8:Graphical illustration of Mega Time consumption (16bytes) ................................. 26 Figure 5.9: Graphical illustration of Uno Time consumption (24bytes) .................................. 26 Figure 5.10: Graphical illustration of Mega Time consumption 24bytes ................................ 27 Figure 5.11: Graphical illustration of Uno Time consumption 32bytes .................................. 27 Figure 5.12: Graphical illustration of Mega Time consumption 32bytes ................................ 28 Figure 5.13: Distribution Type (Discrete uniform) .................................................................. 29 Figure 5.14: QQ plot ................................................................................................................ 29 Figure A.1: AES ECB Single Algorithm ................................................................................. 40 Figure A.2: AES_128 Code .................................................................................................... 41 Figure A.3: AES multiple block encryption/decryption(ECB) Algorithm .............................. 41 vii Figure A.4: ECB multiple Code ............................................................................................... 42 Figure A.5: AES CBC (single call) Algorithm ........................................................................ 42 Figure A.6: AES CBC code ..................................................................................................... 43 Figure A.7: XXTEA Algorithm ............................................................................................... 43 Figure A.8: XXTEA code ........................................................................................................ 45 viii CONTENTS ABSTRACT .................................................................................................................... III ACKNOWLEDGMENT ...............................................................................................
Recommended publications
  • Optimizing the Block Cipher Resource Overhead at the Link Layer Security Framework in the Wireless Sensor Networks
    Proceedings of the World Congress on Engineering 2008 Vol I WCE 2008, July 2 - 4, 2008, London, U.K. Optimizing the Block Cipher Resource Overhead at the Link Layer Security Framework in the Wireless Sensor Networks Devesh C. Jinwala, Dhiren R. Patel and Kankar S. Dasgupta, data collected from different sensor nodes. Since the Abstract—The security requirements in Wireless Sensor processing of the data is done on-the-fly, while being Networks (WSNs) and the mechanisms to support the transmitted to the base station; the overall communication requirements, demand a critical examination. Therefore, the costs are reduced [2]. Due to the multi-hop communication security protocols employed in WSNs should be so designed, as and the in-network processing demanding applications, the to yield the optimum performance. The efficiency of the block cipher is, one of the important factors in leveraging the conventional end-to-end security mechanisms are not performance of any security protocol. feasible for the WSN [3]. Hence, the use of the standard In this paper, therefore, we focus on the issue of optimizing end-to-end security protocols like SSH, SSL [4] or IPSec [5] the security vs. performance tradeoff in the security protocols in WSN environment is rejected. Instead, appropriate link in WSNs. As part of the exercise, we evaluate the storage layer security architecture, with low associated overhead is requirements of the block ciphers viz. the Advanced Encryption required. Standard (AES) cipher Rijndael, the Corrected Block Tiny Encryption Algorithm (XXTEA) using the Output Codebook There are a number of research attempts that aim to do so.
    [Show full text]
  • Design Development and Performance Evaluation of Low Complexity Cryptographic Algorithm for Security in IOT
    7 III March 2019 http://doi.org/10.22214/ijraset.2019.3454 International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com Design Development and Performance Evaluation of Low Complexity Cryptographic Algorithm for Security in IOT Neha Parashar1, Rajveer Singh2 1, 2Rajasthan College of Engineering for Women Abstract: Internet of Things (IoT) is promising future technology is expected to connect billions of devices. Expected to produce more communication Data peaks and data security can be a threat. This The size of the device in this architecture is basically small, Low power consumption. Traditional encryption algorithm in general Due to its complexity and requirements, it is computationally expensive Many rounds of encryption are basically a waste of constraints Gadget energy. Less complicated algorithm, however, possible Compromise required integrity. It is a 64-bit block password that requires a 64-bit key to encrypt data. The architecture of the algorithm is a mixture of feistel and a uniform replacement - to replace the network Simulation. The results show that the algorithm provides just a substantial security five rounds of encryption. Index Terms: IoT, Security; Encryption; Wireless Sensor Network, WSN, I. INTRODUCTION Internet of Things (IoT) is turning into one Emerging research and practice areas of discussion in recent years of implementation. Internet of Things is a model including the general ability to perceive entities Communicate with other devices using the Internet [1]. Due to Broadband Internet is now generally available at its cost the connection is also reduced, with more gadgets and sensors connecting to it [2].
    [Show full text]
  • Flare-‐On 4: Challenge 12 Solution – [Missing]
    Flare-On 4: Challenge 12 Solution – [missing] Challenge Author: Jay Smith (@jay_smif) In this challenge, the scenario presented is that we’ve been breached and an attacker has stolen the real challenge 12 binary. We’re tasked with analyzing the given malware and network packet capture (pcap) file to recover the original challenge and extract its key. This requires reverse engineering several files and then applying our knowledge to developing a tool to analyze malware network traffic. I had a lot of fun writing this challenge, incorporating a lot from malware families I’ve encountered over the years. For those who completed the challenge: congratulations! Note that in addition to this solution we’re providing a parsing script and the results of running the script over the network data. Initial Overview Looking first at the pcap in Wireshark we see that the pcap contains only two TCP streams. The first stream contains an HTTP GET request and response for /secondstage, shown in Figure 1. The contents appear to be random binary data, so it is likely encoded. Save this HTTP object (MD5 128321c4fe1dfc7ff25484d813c838b1) for later. FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | [email protected] | www.FireEye.com 1 Figure 1: HTTP Stream The second TCP stream in Figure 2 contains a binary protocol. Some obvious repetitions and possible structure are visible from simple inspection. We’ll be referring back to this during analysis to help confirm our suspicions while reversing the malware. FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035 | +1 408.321.6300 | +1 877.FIREEYE (347.3393) | [email protected] | www.FireEye.com 2 Figure 2: Binary Stream We’re tasked with analyzing the pcap, which means reconstructing the TCP streams.
    [Show full text]
  • A Lightweight Encryption Algorithm for Secure Internet of Things
    Pre-Print Version, Original article is available at (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 1, 2017 SIT: A Lightweight Encryption Algorithm for Secure Internet of Things Muhammad Usman∗, Irfan Ahmedy, M. Imran Aslamy, Shujaat Khan∗ and Usman Ali Shahy ∗Faculty of Engineering Science and Technology (FEST), Iqra University, Defence View, Karachi-75500, Pakistan. Email: fmusman, [email protected] yDepartment of Electronic Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan. Email: firfans, [email protected], [email protected] Abstract—The Internet of Things (IoT) being a promising and apply analytics to share the most valuable data with the technology of the future is expected to connect billions of devices. applications. The IoT is taking the conventional internet, sensor The increased number of communication is expected to generate network and mobile network to another level as every thing mountains of data and the security of data can be a threat. The will be connected to the internet. A matter of concern that must devices in the architecture are essentially smaller in size and be kept under consideration is to ensure the issues related to low powered. Conventional encryption algorithms are generally confidentiality, data integrity and authenticity that will emerge computationally expensive due to their complexity and requires many rounds to encrypt, essentially wasting the constrained on account of security and privacy [4]. energy of the gadgets. Less complex algorithm, however, may compromise the desired integrity. In this paper we propose a A. Applications of IoT: lightweight encryption algorithm named as Secure IoT (SIT).
    [Show full text]
  • Arduino Nano
    Arduino Nano Arduino Nano Front Arduino Nano Rear Overview The Arduino Nano is a small, complete, and breadboard-friendly board based on the ATmega328 (Arduino Nano 3.0) or ATmega168 (Arduino Nano 2.x). It has more or less the same functionality of the Arduino Duemilanove, but in a different package. It lacks only a DC power jack, and works with a Mini-B USB cable instead of a standard one. The Nano was designed and is being produced by Gravitech. Schematic and Design Arduino Nano 3.0 (ATmega328): schematic, Eagle files. Arduino Nano 2.3 (ATmega168): manual (pdf), Eagle files. Note: since the free version of Eagle does not handle more than 2 layers, and this version of the Nano is 4 layers, it is published here unrouted, so users can open and use it in the free version of Eagle. Specifications: Microcontroller Atmel ATmega168 or ATmega328 Operating Voltage (logic 5 V level) Input Voltage 7-12 V (recommended) Input Voltage (limits) 6-20 V Digital I/O Pins 14 (of which 6 provide PWM output) Analog Input Pins 8 DC Current per I/O Pin 40 mA 16 KB (ATmega168) or 32 KB (ATmega328) of which 2 KB used by Flash Memory bootloader SRAM 1 KB (ATmega168) or 2 KB (ATmega328) EEPROM 512 bytes (ATmega168) or 1 KB (ATmega328) Clock Speed 16 MHz Dimensions 0.73" x 1.70" Power: The Arduino Nano can be powered via the Mini-B USB connection, 6-20V unregulated external power supply (pin 30), or 5V regulated external power supply (pin 27).
    [Show full text]
  • Meet-In-The-Middle Attacks on Reduced-Round XTEA*
    Meet-in-the-Middle Attacks on Reduced-Round XTEA⋆ Gautham Sekar⋆⋆, Nicky Mouha⋆ ⋆ ⋆, Vesselin Velichkov†, and Bart Preneel 1 Department of Electrical Engineering ESAT/SCD-COSIC, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium. 2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium. {Gautham.Sekar,Nicky.Mouha,Vesselin.Velichkov, Bart.Preneel}@esat.kuleuven.be Abstract. The block cipher XTEA, designed by Needham and Wheeler, was published as a technical report in 1997. The cipher was a result of fixing some weaknesses in the cipher TEA (also designed by Wheeler and Needham), which was used in Microsoft’s Xbox gaming console. XTEA is a 64-round Feistel cipher with a block size of 64 bits and a key size of 128 bits. In this paper, we present meet-in-the-middle attacks on twelve vari- ants of the XTEA block cipher, where each variant consists of 23 rounds. Two of these require only 18 known plaintexts and a computational ef- fort equivalent to testing about 2117 keys, with a success probability of 1−2 −1025. Under the standard (single-key) setting, there is no attack re- ported on 23 or more rounds of XTEA, that requires less time and fewer data than the above. This paper also discusses a variant of the classical meet-in-the-middle approach. All attacks in this paper are applicable to XETA as well, a block cipher that has not undergone public analysis yet. TEA, XTEA and XETA are implemented in the Linux kernel. Keywords: Cryptanalysis, block cipher, meet-in-the-middle attack, Feis- tel network, XTEA, XETA.
    [Show full text]
  • Applications of Search Techniques to Cryptanalysis and the Construction of Cipher Components. James David Mclaughlin Submitted F
    Applications of search techniques to cryptanalysis and the construction of cipher components. James David McLaughlin Submitted for the degree of Doctor of Philosophy (PhD) University of York Department of Computer Science September 2012 2 Abstract In this dissertation, we investigate the ways in which search techniques, and in particular metaheuristic search techniques, can be used in cryptology. We address the design of simple cryptographic components (Boolean functions), before moving on to more complex entities (S-boxes). The emphasis then shifts from the construction of cryptographic arte- facts to the related area of cryptanalysis, in which we first derive non-linear approximations to S-boxes more powerful than the existing linear approximations, and then exploit these in cryptanalytic attacks against the ciphers DES and Serpent. Contents 1 Introduction. 11 1.1 The Structure of this Thesis . 12 2 A brief history of cryptography and cryptanalysis. 14 3 Literature review 20 3.1 Information on various types of block cipher, and a brief description of the Data Encryption Standard. 20 3.1.1 Feistel ciphers . 21 3.1.2 Other types of block cipher . 23 3.1.3 Confusion and diffusion . 24 3.2 Linear cryptanalysis. 26 3.2.1 The attack. 27 3.3 Differential cryptanalysis. 35 3.3.1 The attack. 39 3.3.2 Variants of the differential cryptanalytic attack . 44 3.4 Stream ciphers based on linear feedback shift registers . 48 3.5 A brief introduction to metaheuristics . 52 3.5.1 Hill-climbing . 55 3.5.2 Simulated annealing . 57 3.5.3 Memetic algorithms . 58 3.5.4 Ant algorithms .
    [Show full text]
  • The Tiny Encryption Algorithm (TEA) Derek Williams CPSC 6128 – Network Security Columbus State University April 26, 2008
    The Tiny Encryption Algorithm (TEA) Derek Williams CPSC 6128 – Network Security Columbus State University April 26, 2008 1. ABSTRACT The Tiny Encryption Algorithm (TEA) was designed by Wheeler and Needham to be indeed “tiny” (small and simple), yet fast and cryptographically strong. In my research and experiments, I sought to gain first- hand experience to assess its relative simplicity, performance, and effectiveness. This paper reports my findings, affirms the inventors’ claims, identifies problems with incorrect implementations and cryptanalysis, and recommends some solutions. 2. INTRODUCTION The Tiny Encryption Algorithm (TEA) is a symmetric (private) key encryption algorithm created by David Wheeler and Roger Needham of Cambridge University and published in 1994. It was designed for simplicity and performance, while seeking an encryption strength on par with more complicated and resource-intensive algorithms such as DES (Data Encryption Standard). Wheeler and Needham summarize this as follows: “it is hoped that it can easily be translated into most languages in a compatible way… it uses little set up time and does… enough rounds to make it secure… it can replace DES in software, and is short enough to write into almost any program on any computer.” [6] From academic research, one can learn of TEA’s relative merits. My work sought to go further and gain a first-hand understanding of TEA’s simplicity (ease of implementation), performance, and effectiveness (cryptographic strength). Through experiments, I sought to answer the following
    [Show full text]
  • A Lightweight Cryptography Algorithm for Secure Smart Cities and IOT
    RESEARCH ARTICLE Electrica 2020; 20(2): 168-176 A Lightweight Cryptography Algorithm for Secure Smart Cities and IOT Ahmed Mohsin Abed1 , Ali Boyacı2 1Institute of Science and Technology, Istanbul Commerce University, Istanbul, Turkey 2Department of Computer Engineering, Istanbul Commerce University, Istanbul, Turkey Cite this article as: A.A. Abed, A. Boyacı. A Lightweight Cryptography Algorithm for Secure Smart Cities and IOT. Electrica, 2020; 20(2): 168-176. ABSTRACT Lightweight cryptography has a major role in cybersecurity for smart cities and the Internet of Things. It can be further secure by the development of lightweight encryption algorithms that work in restricted devices and with limited specifications such as wireless network sensors. The restricted devices have a small memory, a simple processor, and limited power. To secure them, need lightweight cryptography algorithms and take into account the limited specifications at the same time. In addition, decreasing memory and power consumption in lightweight encryption algorithms, increasing security is also essential. When the lightweight cryptography algorithm is more secure and less consumes memory and energy, it is better and more efficient. In this article, we have developed a lightweight cryptographic algorithm, and through studies, analysis, and comparison with other lightweight cryptography algorithms show that the proposed algorithm is efficient. Keywords: Internet of things, lightweight cryptography, smart cities Introduction A report of the United Nations on 16 May 2018 indicates that 55% of the world lives in cities will attend to 68% in 2050. It emphasizes that governments should focus on integrated poli- cies to improve the lives of both cities and rural dwellers [1].
    [Show full text]
  • A Frequency Generator with Si5351a Synthesizer Module
    A Frequency Generator with Si5351A Synthesizer Module This article describes a simple Frequency Generator that can be used in place of a Variable Frequency Oscillator (VFO) or to replace a Crystal Oscillator. My basic goal was to build a project that could be duplicated easily with components that could be easily sourced through mail order with low cost. The project initially used the AD9850 DDS (Direct Digital Synthesizer) from Analog Devices that outputs both sine and square waves from 1 Hz to 42 MHz. As I wanted a Generator capable of going higher than that in frequency I decided to proceed with Si5351A controlled from an Arduino board or even better from a barebones ATmega328P-PU, as these MCUs are highly popular. After all I had published the detailed construction of a Generator with AD9850 in SV-News early this year (January 2015 issue). The basis of the project is a small readily available board with a mere surface of 3 by 3 centimeters military grade board that incorporates the Si5153A from Silicon Labs, a special 10 ppm 27 MHz crystal, a 3,3 volt regulator (as Si5351A operates in that level) and two mosfet transistors that operate as level converters for the control ports of the ic (SDA and SCL). An on-board jumper selects the desired level for the ports to either 5 or 3,3 volts. The ic which is an SMD type can simultaneously produce up to three different square wave frequencies with a range from 8 Khz to 160 MHz and a 50 ohm output impedance.
    [Show full text]
  • Cryptographic Algorithms in Wearable Communications: an Empirical Analysis
    IEEE COMMUNICATIONS LETTERS, VOL. 23, NO. 11, NOVEMBER 2019 1931 Cryptographic Algorithms in Wearable Communications: An Empirical Analysis Kristtopher Coelho, Danilo Damião, Guevara Noubir, Alex Borges , Michele Nogueira , and José Nacif Abstract— In this letter, we assess the practical impact of tions and analytical models [5], [6]. Despite the importance of lightweight block and stream cipher algorithms on power con- those studies, an empirical study complements them offering sumption and hardware resources for wearable devices that own insights and knowledge, which can aid the design of more low computational resources. Differently from the literature, efficient and cost-effective solutions. Ours is the first to follow we present an empirical and hardware-driven evaluation of the most representative encryption algorithms with regard to the a hardware-driven and empirical evaluation, highlighting the requirements of wearable networks. We design and implement a impacts of the hardware specificity to cryptographic algo- cryptography library useful for wearable devices. Results confirm rithms in wearable devices. a strong correlation between the amount of logic/arithmetic Our analysis targets symmetric cryptography, where the operations, assembly instructions and power consumption for the communicating wearable devices share the session key used two evaluated platforms, and they highlight the need to design to encryption. Particularly, we focus our investigations on two encryption algorithms for wearable devices with high energy different classes of symmetric lightweight encryption algo- consumption efficiency, but strong security level similar to AES. rithms, as block ciphers [7], and stream cipher. For our Index Terms— Wearable devices, cryptographic algorithms, evaluation approach, we have designed and implemented a block cipher, stream cipher, and power consumption.
    [Show full text]
  • Water Level Tracking System by Using Online Arduino a Thesis Submitted to the Gradute School of Applied Sciences of Near East U
    WATER LEVEL TRACKING SYSTEM BY USING ONLINE ARDUINO A THESIS SUBMITTED TO THE GRADUTE SCHOOL OF APPLIED SCIENCES OF NEAR EAST UNIVERSITY By ÇAĞRI ÖZKAN In Partial Fulfillment of the Reguirements for The Degree of Master of Science in Information Systems Engineering NICOSIA, 2017 WATER LEVEL TRACKING SYSTEM BY USING ONLINE ARDUINO A THESIS SUBMITTED TO THE GRADUTE SCHOOL OF APPLIED SCIENCES OF NEAR EAST UNIVERSITY By ÇAĞRI ÖZKAN In Partial Fulfillment of the Reguirements for The Degree of Master of Science in Information Systems Engineering NICOSIA, 2017 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Çağrı Özkan Signature : Date: ACKNOWLEDGMENTS I would like to express my deepest gratitude to my supervisor Assistant Professor Dr. Boran Sekeroglu for his great support and open-minded mentorship, without whom this study would not have been completed. Special thanks go to Mr. Murat Ozturk, Mr. Süleyman Pasa, Mr. Emrah Bebek, Mr. Abdullah Sarı, Mr. Cengiz Barcın, and Ms. Aria Toprak for their technical assistance on firefighting reservoirs and project itself. I am grateful to Assistant Prof. Dr. Sertan Kaymak, Dr. Perihan Aysal Adun and Ms. Kezban Alpan for their invaluable recommendations. I would like to thank all the chairs in my jury for their scholarly recommendations. I am deeply grateful to my parents for their long-life support.
    [Show full text]