Preprint a Conceptual Model of Immersive Experience H Lee 2020

Total Page:16

File Type:pdf, Size:1020Kb

Preprint a Conceptual Model of Immersive Experience H Lee 2020 Preprint: A Conceptual Model of Immersive Experience in Extended Reality DOI:10.31234/osf.io/sefkh A Conceptual Model of Immersive Experience in Extended Reality Hyunkook Lee ([email protected]) Applied Psychoacoustics Lab (APL), University of Huddersfield, HD1 3DH, UK. ABSTRACT The term immersion or immersive is popularly used when describing and evaluating technologies in the area of extended reality (i.e., virtual/augmented/mixed reality). Much research has been conducted on immersion over the last few decades. However, there is still a lack of consistency in how the term is defined in the literature. Presence and involvement are other prominent concepts studied in the field of extended reality. However, there is currently no consensus on their relationship with immersion among researchers. This paper first discusses different dimensions of immersion as well as those of presence and involvement, aiming to resolve potential confusion around the terms and synthesise a relationship among them. From this, a new conceptual model of immersive experience for future studies in extended reality is proposed. The model defines physical presence, social/self presence and involvement as the main high-level attributes that collectively lead to an immersive experience. Each pair of the three attributes shares a common lower-level attribute of sensory, narrative or task/motor engagement, which is an initial step towards the higher-level experience. Plausibility, interactivity and interestingness are defined as the main properties of immersive system and content, each of which is biased by a subjective factor: internal reference, skills/knowledge and personal preference, respectively. Keywords: Immersion, immersive experience, conceptual model, extended reality, presence, involvement 1 Preprint: A Conceptual Model of Immersive Experience in Extended Reality DOI:10.31234/osf.io/sefkh 0 INTRODUCTION The last decade saw a significant advancement of technologies for virtual reality (VR), augmented reality (AR) and mixed reality (MR), all of which are encompassed in the umbrella term extended reality (XR). In VR, the user is visually and aurally occluded from the physical environment by wearing a head-mount display (HMD) and headphones, whereas in AR, the user interacts with virtual objects superimposed onto the physical environment seen through special glasses or the screen of mobile device. MR blends both VR and AR experiences. Today XR technologies are being adopted in an increasing number of applications, such as games (Carvalho, Soares, Neves, Soares, & Lins, 2014), audio-visual entertainment (Slater & Sanchez-Vives, 2016), medicine (Andrews, Southworth, Silva, & Silva, 2016), tourism (Tussyadiah, Wang, Jung, & tom Dieck, 2018), education (Freina & Ott, 2015), etc. It is frequently described that XR applications aim to provide the user with an immersive experience. In the industry, the term immersive has become a popular marketing term for XR technologies. In academia, however, there has been much debate on the meaning of immersion and the relationship among immersion and other related concepts such as presence and involvement. However, there still exists no standard definition of immersion. Different models tend to use different terms with overlapping meanings or identical terms with slightly different meanings depending on the context. More importantly, there is no global conceptual framework for measuring the level of immersive experience that can be applied in a wide range of XR applications. Even though several multidimensional models of immersion have been proposed (e.g., (Arsenault, 2005; Brown & Cairns, 2004; Calleja, 2007; Ermi & Mäyrä, 2005; Ryan, 2003)), most of them are specific to the contexts of video games, and therefore it might be difficult to apply them directly in other contexts. It is also found in the literature that terms presence, involvement or engagement are often used interchangeably with immersion, whereas other researchers strictly distinguish them as different concepts. The inconsistency and ambiguity in the terminology could cause confusion in comparing different studies. From the above background, the present paper aims to define relationships among various concepts related to immersion and integrate them into a general conceptual model of immersive experience. Firstly, Section 1 discusses the multidimensionality of immersion and identify the source of confusion around the term. From this, a standard terminology is proposed for the purpose of consistency. Section 2 briefly explicates the concepts of physical presence, social/self presence and involvement, which are considered as the main underlying 2 Preprint: A Conceptual Model of Immersive Experience in Extended Reality DOI:10.31234/osf.io/sefkh factors of immersive experience in this paper, and how each concept is related to immersive experience. Based on the discussions provided in Sections 1 and 2, Section 3 proposes and details a conceptual model of immersive experience. The model establishes a relationship among the high-level concepts physical presence, social/self presence and involvement in terms of immersive experience, and identifies the associated properties of immersive system and content as well as potential subjective factors. 1 MULTIDIMENSIONALITY OF IMMERSION Although there is still no standard definition of immersion, the general consensus in the literature seems to be that immersion is a multidimensional construct. As summarised in Table 1, researchers have proposed different dimensions of immersion using various descriptive words, e.g., perceptual and psychological immersion (Lombard & Ditton, 1997), sensory, imaginative and challenge-based immersion (Ermi & Mäyrä, 2005), sensory, fictional and systemic immersion (Arsenault, 2005), narrative and ludic immersion (Ryan, 2003), narrative and strategic/tactical immersion (Adams & Rollings, 2007). However, some of these terms largely overlap in their meanings, and seem to connote the general ideas of either ‘presence’ or ‘involvement’, which are explicated in Section 2.1. For example, Biocca and Delaney (1995) defined perceptual immersion as “the degree to which a virtual environment submerges the perceptual system of the user”. The same term is used by McMahan (2013) to describe the sensation of being surrounded by a virtual environment (VE), which is also implied in the definition of sensory immersion by Ermi and Mäyrä (2005). These terms commonly describe a passive experience of immersion (Eaton & Lee, 2019), which is induced by the sensory simulation of a technology. They are also commonly related to the concept of ‘presence’. The other immersion terms above describe an active (cognitive) experience of immersion (Eaton & Lee, 2019). For instance, imaginative immersion (Ermi & Mäyrä, 2005) and narrative immersion (Adams & Rollings, 2007; Ryan, 2003) commonly require involvement in the narrative of a content. Challenge-based immersion, ludic immersion, systemic immersion and strategy/tactical immersion are commonly to do with involvement in a challenging task or an activity. In addition, the Oxford Learner’s Dictionaries also provide two separate definitions of immersion; (i) “the act of putting somebody/something into a liquid, especially so that they or it are completely covered; the state of being covered by a liquid”, and (ii) “the state of being completely involved in something”. The first definition is often used as a metaphor for perceptual or sensory immersion, e.g.,(Murray, 1997, pp. 98-99), whereas the second one is essentially a cognitive phenomenon, which does not necessarily require a sensory simulation. 3 Preprint: A Conceptual Model of Immersive Experience in Extended Reality DOI:10.31234/osf.io/sefkh Table 1. Summary of different immersion terms from the literature. Immersion terms Descriptions Connoted concept “the degree to which a virtual environment submerges the perceptual system of the user” (F Perceptual (F Biocca & Biocca & Delaney, 1995); Delaney, 1995; McMahan, The sensation of being surrounded 2013) by a virtual environment Presence (McMahan, 2013) The state of being surrounded by Sensory (Ermi & Mäyrä, audio-visual stimuli that can 2005) “overpower the sensory information coming from the real world” Imaginative (Ermi & Mäyrä, 2005) The state of being heavily involved Involvement Fictional (Arsenault, 2005) (cognitively absorbed) in the story in a narrative of a world and by its characters. content Narrative (Adams & Rollings, 2007; Ryan, 2003) Ludic (Ryan, 2003) Challenge-based (Ermi & The stage of being heavily involved Involvement in a challenging task or an activity in a task or an Mäyrä, 2005) that requires mental or/and motor activity Systemic (Arsenault, 2005) skills. Strategic and Tactical (Adams & Rollings, 2007) Several researchers attempted to provide standalone definitions of immersion (e.g., (Agrawal, Simon, Bech, Bærentsen, & Forchhammer, 2020; Murray, 1997; Witmer & Singer, 1998) However, such definitions tend to be biased towards only one dimension of immersion. For example, Witmer and Singer (1998) defines immersion as “a psychological state characterized by perceiving oneself to be enveloped by, included in, and interacting with an environment that provides a continuous stream of stimuli and experiences”. Whilst this definition mainly describes the perceptual aspect of the experience provided by the system, the cognitive aspect of the experience is not clearly implied. Agrawal et al. (2020), on the other hand, define immersion as “a phenomenon
Recommended publications
  • New Realities Risks in the Virtual World 2
    Emerging Risk Report 2018 Technology New realities Risks in the virtual world 2 Lloyd’s disclaimer About the author This report has been co-produced by Lloyd's and Amelia Kallman is a leading London futurist, speaker, Amelia Kallman for general information purposes only. and author. As an innovation and technology While care has been taken in gathering the data and communicator, Amelia regularly writes, consults, and preparing the report Lloyd's does not make any speaks on the impact of new technologies on the future representations or warranties as to its accuracy or of business and our lives. She is an expert on the completeness and expressly excludes to the maximum emerging risks of The New Realities (VR-AR-MR), and extent permitted by law all those that might otherwise also specialises in the future of retail. be implied. Coming from a theatrical background, Amelia started Lloyd's accepts no responsibility or liability for any loss her tech career by chance in 2013 at a creative or damage of any nature occasioned to any person as a technology agency where she worked her way up to result of acting or refraining from acting as a result of, or become their Global Head of Innovation. She opened, in reliance on, any statement, fact, figure or expression operated and curated innovation lounges in both of opinion or belief contained in this report. This report London and Dubai, working with start-ups and corporate does not constitute advice of any kind. clients to develop connections and future-proof strategies. Today she continues to discover and bring © Lloyd’s 2018 attention to cutting-edge start-ups, regularly curating All rights reserved events for WIRED UK.
    [Show full text]
  • Conceptual Modelling and Humanities
    Joint Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo Papers Modellierung 2020: Short Papers 13 Conceptual Modelling and Humanities Yannic Ole Kropp,1 Bernhard Thalheim2 Abstract: Humanities are becoming a hyping field of intensive research for computer researchers. It seems that conceptual models may be the basis for development of appropriate solutions of digitalisation problems in social sciences. At the same time, humanities and social sciences can fertilise conceptual modelling. The notion of conceptual models becomes enriched. The approaches to modelling in social sciences thus result in a deeper understanding of modelling. The main aim of this paper is to learn from social sciences for conceptual modelling and to fertilise the field of conceptual modelling. 1 The Value of Conceptual Modelling 1.1 Computer science is IT system-oriented Computer system development is a complex process and needs abstraction, separation of concerns, approaches for handling complexity and mature support for communication within development teams. Models are one of the main artefacts for abstraction and complexity reduction. Computer science uses more than 50 different kinds of modelling languages and modelling approaches. Models have thus been a means for system construction for a long time. Models are widely used as an universal instrument whenever humans are involved and an understanding of computer properties is essential. They are enhanced by commonly accepted concepts and thus become conceptual models. The main deployment scenario for models and conceptual models is still system construction (with description, prescription, and coding sub-scenarios) although other scenarios became popular, e.g. documentation, communication, negotiation, conceptualisation, and learning. 1.2 Learning from Digital Hunanities Digital humanities is becoming a hyping buzzword nowadays due to digitalisation and due to over-applying computer technology.
    [Show full text]
  • Conceptual Model Evaluation. Towards More Paradigmatic Rigor Jan Recker1
    Conceptual Model Evaluation. Towards more Paradigmatic Rigor Jan Recker1 1 Centre for Information Technology Innovation Queensland University of Technology 126 Margaret Street, Brisbane QLD 4000, Australia [email protected] Abstract. Information Systems (IS) research has so far been primarily con- cerned with the development of new modeling languages, techniques, and methods. Also, evaluation approaches have been developed in order to assess the appropriateness of a modeling approach in a given context. Both modeling and evaluation approaches, however, lack epistemological rigor, leading to problems regarding the applicability of a certain modeling language in a given context on the one hand, and regarding the feasibility of certain evaluation ap- proaches towards certain modeling questions on the other hand. We therefore argue for a philosophical-paradigmatic discussion of evaluation methods for conceptual modeling languages in order to assess their applicability in given modeling contexts and present our research in progress towards a framework for paradigmatic discussion on model evaluation. Keywords. Philosophy, modeling methods, information modeling, research evaluation 1 Introduction The importance of information systems (IS) for successful businesses is widely rec- ognized [1]. Their implementation is preceded by their development through design methodologies which utilize information models to specify IS on a conceptual level. Such conceptual models have been successfully employed throughout IS theory and practice. This has led, however, to the proliferation of an enormous amount of avail- able modeling approaches. The “flooding” of the IS discipline with a multiplicity of conceptual modeling approaches consequently leads to an immanent need for com- paring and evaluating existing modeling methods in order to determine which ap- proach is most appropriate for a given modeling task.
    [Show full text]
  • Conceptual Modeling
    Conceptual Modeling Laurens Van Damme Table of contents • What are Conceptual models? • Conceptualization • Mental model • Conceptual model • How are Conceptual models different from others? • Nonnecessity • Requirements 2 What are Conceptual models? 3 Overview 4 Overview We all know what this is! 5 Overview 6 Conceptualization = set of concepts in the mind of an agent 7 Concept • Aristotle ±340BC • Cognitive processes ↳ makes, uses and transforms ↳ mental representations • Mental representations • Refer to / are about something • Non-conceptual (sensation) • Conceptual (thoughts/believes) https://www.nytimes.com/2016/05/27/world/europe/greece-aristotle-tomb.html 8 Concept Conceptual mental representation → Rely on representation primitives = concepts Concept • Reflects regularities in reality that are cognitively relevant to us • Cognitive filter → strip out properties unnecessary for the problem 9 Concept Example Navigating on the Belgian’s highways Ordering of road segments Road segment Intersection between road segments Filtered: width, distance of or traffic on the road segments https://en.wikipedia.org/wiki/List_of_motorways_in_Belgium 10 Conceptualization = set of concepts in the mind of an agent • Individual concepts (e.g., E19) • Relational concepts: associations that relate individual concepts https://thesaurus.plus/antonyms/conceptualization 11 Overview 12 Mental Model The external reality filtered through the lens of a conceptualization Different levels of generality: • Reflect general beliefs (e.g., every road segment has
    [Show full text]
  • On Using Conceptual Modeling for Ontologies
    On Using Conceptual Modeling for Ontologies S. Spaccapietra1, C. Parent2, C.Vangenot1 and N. Cullot3 1 Database Laboratory, EPFL, 1015 Lausanne, Switzerland [email protected], [email protected] 2 HEC-INFORGE, University of Lausanne, 1015 Lausanne, Switzerland [email protected] 3LE2I Laboratory of Business, University of Burgundy, 21000 Dijon, France [email protected] Abstract. Are database concepts and techniques suitable for ontology design and management? The question has been on the floor for some time already. It gets a new emphasis today, thanks to the focus on ontologies and ontology services due to the spread of web services as a new paradigm for information management. This paper analyzes some of the arguments that are relevant to the debate, in particular the question whether conceptual data models would adequately support the design and use of ontologies. It concludes suggesting a hybrid approach, combining databases and logic-based services.1 1. Introduction Nowadays, all major economic players have decentralized organizational structures, with multiple autonomous units acting in parallel. New information systems have to handle a variety of information sources, from proprietary ones to those available in web services worldwide. Their complexity is best controlled using a network of coordinated web services capable of grasping relevant information wherever it may be and exchanging information with all potential partners. Data semantics is at the heart of such multi-agent systems. Interacting agents in an open environment do not necessarily share a common understanding of the world at hand, as used to be the case in traditional enterprise information systems.
    [Show full text]
  • COIMBATORE-641046 DEPARTMENT of COMPUTER APPLICATIONS (Effective from the Academic Year 2019-2020)
    Certificate course in Augmented Reality -2019-20-ud Annexure No: 55F Page 1 of 4 SCAA Dated: 09.05.2019 Annexure – V BHARATHIAR UNIVERSITY:: COIMBATORE-641046 DEPARTMENT OF COMPUTER APPLICATIONS (Effective from the academic Year 2019-2020) Certificate Course in Augmented Reality Eligibility for admission to the course A pass in Higher Secondary Examination (+2) conducted by the Government of Tamil Nadu or an examination accepted as equivalent there to by the syndicate. Duration of the course The candidates can undergo this course both in full-time (3 months) and part-time (6 months). The certificate programme consists of theory and practical courses. Regulations The general Regulations of the Bharathiar University Choice Based Credit System are applicable to this certificate programme. The Medium of Instruction and Examinations The medium of instruction and Examinations shall be in English. Submission of Record Notebooks for Practical Examinations Candidates taking the Practical Examinations should submit bonafide Record Note Books prescribed for the Examinations. Otherwise the candidates will not be permitted to take the Practical Examinations. Revision of Regulations and Curriculum The above Regulation and Scheme of Examinations will be in vogue without any change for a minimum period of three years from the date of approval of the Regulations. The University may revise /amend/ change the Regulations and Scheme of Examinations, if found necessary. Scheme of Examinations Max Course Code Subject and Paper L P Credits Marks Paper I Augmented Reality 4 2 6 150 Certificate course in Augmented Reality -2019-20-ud Annexure No: 55F Page 2 of 4 SCAA Dated: 09.05.2019 Course Title :AUGMENTED REALITY No.
    [Show full text]
  • A Multi-Paradigm Modeling Framework for Modeling and Simulating Problem Situations
    Proceedings of the 2014 Winter Simulation Conference A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds. A MULTI-PARADIGM MODELING FRAMEWORK FOR MODELING AND SIMULATING PROBLEM SITUATIONS Christopher Lynch Jose Padilla Saikou Diallo John Sokolowski Catherine Banks Virginia Modeling, Analysis and Simulation Center Old Dominion University 1030 University Boulevard Suffolk, VA 23435, USA ABSTRACT This paper proposes a multi-paradigm modeling framework (MPMF) for modeling and simulating problem situations (problems whose specification is not agreed upon). The MPMF allows for a different set of questions to be addressed from a problem situation than is possible through the use of a single modeling paradigm. The framework identifies different levels of granularity (macro, meso, and micro) from what is known and assumed about the problem situation. These levels of granularity are independently mapped to different modeling paradigms. These modeling paradigms are then combined to provide a comprehensive model and corresponding simulation of the problem situation. Finally, the MPMF is implemented to model and simulate the problem situation of representing the spread of obesity. 1 INTRODUCTION When building models and simulations, it is desirable to have a well-defined problem and an agreed upon solution for representing that problem, yet most models depart from this premise. This is difficult to achieve when representing problem situations where there is no agreed upon specification due to differences in opinions of the team (Vennix, 1999). Modeling this type of problem has been addressed by reaching a consensus on what the problem is as proposed in soft-systems methodology (Checkland, 2000).
    [Show full text]
  • A Conceptual Model of Software Development
    Extracted form Ph. Kruchten: Software project management with OpenUP Draft April 2007 A Conceptual Model of Software Development A software project is temporary endeavour intended to create a new software product or service, or the software part of a software-intensive system. It is temporary in the sense that it has a definite beginning and a definite end, in contrast with a continuous endeavour, such as running the IT operations of an organization. A software project has specific and sometimes conflicting objectives and many constraints of diverse nature, mainly technical, temporal and financial. Software project management is therefore the art of balancing competing objectives, managing risks, and overcoming constraints to successfully deliver a product which meets the needs of both customers and users (the customer paying the bill not always being the end-user). A conceptual model of software development To explore the many facets of software project management, we will first introduce a conceptual model of software development. This model (or ontology) of software projects is organized around eight key concepts and their relationships: 1. Intent 2. Product 3. Work 4. People 5. Time 6. Quality 7. Risk 8. Project Intent The concept of Intent denotes what the project is trying to achieve. The Intent defines the scope of the project, the intentions and hopes of the key stakeholders, the objectives. While we think of the intent as “the requirements” or “the specification”, in practice Intent may take many diverse forms: a set of tests that the product must pass contributes to define Intent. A set of software problem reports that must be dealt with also indirectly defines Intent.
    [Show full text]
  • A Review of Extended Reality (XR) Technologies for Manufacturing Training
    technologies Article A Review of Extended Reality (XR) Technologies for Manufacturing Training Sanika Doolani * , Callen Wessels, Varun Kanal, Christos Sevastopoulos, Ashish Jaiswal and Harish Nambiappan and Fillia Makedon * Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA; [email protected] (C.W.); [email protected] (V.K.); [email protected] (C.S.); [email protected] (A.J.); [email protected] (H.N.) * Correspondence: [email protected] (S.D.); [email protected] (F.M.) Received: 30 October 2020; Accepted: 5 December 2020; Published: 10 December 2020 Abstract: Recently, the use of extended reality (XR) systems has been on the rise, to tackle various domains such as training, education, safety, etc. With the recent advances in augmented reality (AR), virtual reality (VR) and mixed reality (MR) technologies and ease of availability of high-end, commercially available hardware, the manufacturing industry has seen a rise in the use of advanced XR technologies to train its workforce. While several research publications exist on applications of XR in manufacturing training, a comprehensive review of recent works and applications is lacking to present a clear progress in using such advance technologies. To this end, we present a review of the current state-of-the-art of use of XR technologies in training personnel in the field of manufacturing. First, we put forth the need of XR in manufacturing. We then present several key application domains where XR is being currently applied, notably in maintenance training and in performing assembly task.
    [Show full text]
  • X-Reality Museums: Unifying the Virtual and Real World Towards Realistic Virtual Museums
    applied sciences Article X-Reality Museums: Unifying the Virtual and Real World Towards Realistic Virtual Museums George Margetis 1 , Konstantinos C. Apostolakis 1, Stavroula Ntoa 1, George Papagiannakis 1,2 and Constantine Stephanidis 1,2,* 1 Foundation for Research and Technology Hellas, Institute of Computer Science, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Greece; [email protected] (G.M.); [email protected] (K.C.A.); [email protected] (S.N.); [email protected] (G.P.) 2 Department of Computer Science, University of Crete, GR-700 13 Heraklion, Greece * Correspondence: [email protected]; Tel.: +30-2810-391-741 Abstract: Culture is a field that is currently entering a revolutionary phase, no longer being a privilege for the few, but expanding to new audiences who are urged to not only passively consume cultural heritage content, but actually participate and assimilate it on their own. In this context, museums have already embraced new technologies as part of their exhibitions, many of them featuring augmented or virtual reality artifacts. The presented work proposes the synthesis of augmented, virtual and mixed reality technologies to provide unified X-Reality experiences in realistic virtual museums, engaging visitors in an interactive and seamless fusion of physical and virtual worlds that will feature virtual agents exhibiting naturalistic behavior. Visitors will be able to interact with the virtual agents, as they would with real world counterparts. The envisioned approach is expected to not only provide refined experiences for museum visitors, but also achieve high quality entertainment combined with more effective knowledge acquisition. Keywords: extended reality; diminished reality; true mediated reality; augmented reality; virtual reality; natural multimodal interaction; unified user experiences; interactive museum exhibits Citation: Margetis, G.; Apostolakis, K.C.; Ntoa, S.; Papagiannakis, G.; Stephanidis, C.
    [Show full text]
  • The Metaverse and Digital Realities Transcript Introduction Plenary
    [Scientific Innovation Series 9] The Metaverse and Digital Realities Transcript Date: 08/27/2021 (Released) Editors: Ji Soo KIM, Jooseop LEE, Youwon PARK Introduction Yongtaek HONG: Welcome to the Chey Institute’s Scientific Innovation Series. Today, in the 9th iteration of the series, we focus on the Metaverse and Digital Realities. I am Yongtaek Hong, a Professor of Electrical and Computer Engineering at Seoul National University. I am particularly excited to moderate today’s webinar with the leading experts and scholars on the metaverse, a buzzword that has especially gained momentum during the online-everything shift of the pandemic. Today, we have Dr. Michael Kass and Dr. Douglas Lanman joining us from the United States. And we have Professor Byoungho Lee and Professor Woontack Woo joining us from Korea. Now, I will introduce you to our opening Plenary Speaker. Dr. Michael Kass is a senior distinguished engineer at NVIDIA and the overall software architect of NVIDIA Omniverse, NVIDIA’s platform and pipeline for collaborative 3D content creation based on USD. He is also the recipient of distinguished awards, including the 2005 Scientific and Technical Academy Award and the 2009 SIGGRAPH Computer Graphics Achievement Award. Plenary Session Michael KASS: So, my name is Michael Kass. I'm a distinguished engineer from NVIDIA. And today we'll be talking about NVIDIA's view of the metaverse and how we need an open metaverse. And we believe that the core of that metaverse should be USD, Pixar's Universal Theme Description. Now, I don't think I have to really do much to introduce the metaverse to this group, but the original name goes back to Neal Stephenson's novel Snow Crash in 1992, and the original idea probably goes back further.
    [Show full text]
  • Conceptual Modeling for Virtual Reality
    Conceptual Modeling for Virtual Reality Olga De Troyer, Frederic Kleinermann, Bram Pellens, and Wesley Bille WISE Research Lab Vrije Universiteit Brussel Pleinlaan 2, B-1050 Brussel, Belgium {olga.detroyer,frederic.kleinermann,bram.pellens, Wesley.Bille}@vub.ac.be Abstract that the development of VR applications directly starts at the implementation level. The virtual world that needs to This paper explores the opportunities and challenges for be created must be expressed in terms of low level VR Conceptual Modeling in the domain of Virtual Reality building blocks, such as textures, shapes, sensors, (VR). VR applications are becoming more feasible due to interpolators, etc. This requires a considerable amount of better and faster hardware, and due to new technology and background knowledge in VR. In addition, it makes the faster network connections they also start to appear on the gap between the application domain and the level at Internet. However, the development of such applications which the virtual world needs to be specified very large, is still a specialized, time-consuming and expensive and this makes the translation from the concepts in the process. By introducing a Conceptual Modeling phase application domain into implementation concepts a very into the development process of VR applications, a difficult issue. number of the obstacles preventing a quick spread of this type of applications can be removed. However, existing Like for other domains, introducing a Conceptual Design Conceptual Modeling techniques are too limited for phase in the development process of a VR application modeling a VR application in an appropriate way. The may help the VR community in several ways.
    [Show full text]