Raffinose, a Novel Radioactive Label for Determining Organ Sites of Catabolism of Proteins in the Circulation Jonathon Van Zile

Total Page:16

File Type:pdf, Size:1020Kb

Raffinose, a Novel Radioactive Label for Determining Organ Sites of Catabolism of Proteins in the Circulation Jonathon Van Zile University of South Carolina Scholar Commons Faculty Publications Chemistry and Biochemistry, Department of 9-6-1978 [3H]‑Raffinose, a Novel Radioactive Label for Determining Organ Sites of Catabolism of Proteins in the Circulation Jonathon Van Zile Lee A. Henderson John W. Baynes University of South Carolina - Columbia, [email protected] Suzanne R. Thorpe Follow this and additional works at: https://scholarcommons.sc.edu/chem_facpub Part of the Chemistry Commons Publication Info Published in Journal of Biological Chemistry, Volume 254, Issue 9, 1978, pages 3547-3553. This research was originally published in the Journal of Biological Chemistry. Zile J, Henderson LA, Baynes JW, Thorpe SR. [3H] Raffinose, a Novel Radioactive Label for Determining Organ Sites of Catabolism of Proteins in the Circulation. Journal of Biological Chemistry. 1978; 254: 3547-3553. © the American Society for Biochemistry and Molecular Biology. This Article is brought to you by the Chemistry and Biochemistry, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. : [3H]Raffinose, a novel radioactive label for determining organ sites of catabolism of proteins in the circulation. J Van Zile, L A Henderson, J W Baynes and S R Thorpe J. Biol. Chem. 1979, 254:3547-3553. Downloaded from Access the most updated version of this article at http://www.jbc.org/ http://www.jbc.org/content/254/9/3547.citation Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites . Alerts: at USC SCHOOL OF MEDICINE on September 30, 2014 • When this article is cited • When a correction for this article is posted Click here to choose from all of JBC's e-mail alerts This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/254/9/3547.citation.full.html#ref-list-1 THE JOURNAL OF BVXOG~CA~ CHEMI~TRV Vol. 254, No. 9, Issue of May 10. pp. 3547-3553, 1979 Printedin U.S.A. [3HjRaffinose, a Novel Radioactive Label for Determining Organ Sites of Catabolism of Proteins in the Circulation* (Received for publication, September 6, 1978) Jonathan Van Zile, Lee A. Henderson,$ John W. Baynes, and Suzanne R. Thorpe8 From the Department of Chemistry, College of Science and Mathematics, and School of Medicine, University of South Carolina, C&umbia, South Carol&a 29268 The primary tissue sites of catabolism of plasma covalently coupled to plasma proteins should be a use- proteins with long circulating half-lives are unknown. ful radioactive tracer for detecting the tissue and cel- It has been difficult to identify these sites because lular sites of catabolism of long lived circulating pro- plasma proteins are delivered to tissues at relatively teins. Downloaded from slow rates but are rapidly degraded intracellularly within lysosomes. Therefore, a tracer attached to pro- tein is lost from the site of uptake before an amount There is extensive information concerning the sites of syn- sufficient for quantitation can accumulate. We hypoth- thesis and kinetics of turnover of plasma proteins; however, esized that sucrose (Glupal-2 /3Fruf) would be a useful there is little firm evidence concerning their mechanisms of label to circumvent this difficulty because of the stabil- http://www.jbc.org/ ity of sucrose in lysosomes; and thus, sucrose should clearance from the circulation or their tissue sites of degra- dation (2-4). Perhaps the greatest technical difficulty in ob- remain in tissue long after the protein to which it was attached had been degraded to products released from taining this information has been the absence of a suitable the lysosome. [G-3HJRaffinose (RAF, Galpal- Glupcwl- radioactive label with which to monitor the sites of catabolism 2flFruf) was selected as the vehicle for attaching su- of proteins with the long circulating half-lives characteristic of plasma proteins. In general, the rate of intracellular degra- crose to protein. [31XjRAF was converted to the C-6 at USC SCHOOL OF MEDICINE on September 30, 2014 aldehydogalactose form with galactose oxidase and dation of plasma proteins within lysosomes far exceeds the then covalently coupled to protein by reductive ami- rate of clearance of these long lived proteins. Thus, if plasma nation using NaBH3CN. proteins are labeled with conventional labels, such as ? or [‘H]RAF was coupled first to two relatively long lived radioactive amino acids, the tracer does not accumulate at the plasma proteins, bovine serum albumin and fetuin. The site of catabolism, but, rather, as the protein is degraded to half-lives of these proteins in the rat circulation (&,* = monomeric products which exit from the lysosome, the label -24 h) was unchanged, suggesting that RAF did not is lost to cellular or extracellular metabolic pools, or both. In alter the normal mechanisms of protein clearance. contrast, the sites of catabolism of proteins with short circu- When attached to short lived proteins with known sites lating half-lives are readily identified since their rates of of catabolism, such as asialofetuin, RNase B, and heat- clearance are relatively rapid, compared to the rate of lyso- denatured albumin, neither the tissue nor cellular sites somal digestion. It has been possible, therefore, to identify the of uptake of the proteins were altered. Thus, 13H]RAF- liver as the primary site for catabolism of [“H,%u]asialocer- asialofetuin was recovered almost exclusively (>90%) uloplasmin (5) and lz51-RNase B (6) injected in rats, and in the liver parenchymal cell fraction, while both bovine /3-glucuronidase injected in mice (7), all proteins which [JHJRAF-labeled RNase B and heat-denatured albumin exhibit half-lives of 15 min or less. were recovered primarily (>85%) in nonparenchymal In order to circumvent the difficulties inherent in determin- cells. In addition, the RAF label was observed to reside ing the in. uiuo fate of long lived plasma proteins, a tracer is stably (tl,2 > 100 h) in the liver following degradation of the carrier protein; in contrast, radioactivity from “‘I- needed which will 1) not affect mechanisms of protein clear- labeled asialofetuin or RNase B was rapidly (tl,z < 30 ance and catabolism, 2) be resistant to degradation by lyso- min) lost from liver. Radioactivity from 13H]RAF-pro- somal hydrolases, and 3) accumulate in lysosomes at the site teins was recovered in a lysosomally enriched subcel- of the labeled protein’s degradation. We hypothesized that lular fraction in liver and consisted of a low molecular sucrose (Glcpcyl-ZPFru,) covalently attached to protein weight species (-llOO), containing both glucose and through its glucosyl moiety might fulfill these criteria for the fructose in a ratio similar to that in the original pro- following reasons. First, because of the stable equilibration of tein. The results of these studies establish that 13H]RAF inulin (a fructan) and rafiinose (RAF, Galpcul-GGlcpal- 2/3Frun into plasma and extravascular spaces in uivo (8), it * This work was supported by United States Public Health Service seemed unlikely that the terminal fructose residues on a Research Grant AM19971 and National Institutes of Health Biomed- ical Research Support Grant 5S07RR07160. A preliminary report of protein would serve as recognition markers for a carbohy- this work has appeared (1). The costs of publication of this article drate-dependent clearance process analogous to those already were defrayed in part by the payment of page charges. This article described for galactose (9), fucose (lo), mannose (11, 12), and must therefore be hereby marked “aduertisement” in accordance N-acetylglucosamine (13,14) terminal glycoproteins. Second, with 18 USC. Section 1734 solely to indicate this fact. because of the absence of significant levels of mammalian * This work has been submitted, in part, in partial fulfillment of lysosomal sucrase activity (15), it seemed unlikely that hy- the requirements for a Master of Science degree in Chemistry from the University of South Carolina. drolysis of the sucrose moiety would occur either before or 5 To whom all correspondence should be addressed at the Depart- after degradation of the protein. Finally, since sucrose does ment of Chemistry, University of South Carolina, Columbia, S. C. not readily diffuse from lysosomes (15), it or its amino acid 29208. conjugate should accumulate at this subcellular site of protein 3547 3548 Determination of Sites of Catabolism of Circulating Proteins catabolism, despite the fact that other components of the lation fluid (Beckman Bio-Solv EP). Weighed portions (-1 g) of tissue protein would exit from the lysosome following degradation. from ““I-protein injection experiments were counted directly in a As a vehicle for the attachment of sucrose to protein, we Beckman Gamma 4000 gamma counter. Isolation of parenchymal and non-parenchymal cells of liver by collagenase digestion and differen- chose the trisaccharide [G-3H]raffinose as our radioactive tial centrifugation was carried out as previously described (6). Sub- starting material. Oxidation of the C-6 hydroxyl of the galac- cellular fractionation of liver by differential centrifugation into nu- tose residue, using galactose oxidase (16), provided an alde- clear, mitochondrial/lysosomal, and supernatant fractions was per- hyde function which could be readily coupled to protein, formed according to Gregoriadis and Sourkes (22) using P-N-acetyl- under mild conditions, using NaBH3CN (17). We present hexosaminidase activity (23) as a lysosomal marker enzyme. below the results obtained in vitro for the coupling of RAF’ In order to characterize products resulting from the in uiuo degra- dation of [gH]RAF-labeled proteins, livers were taken at various times to several proteins by this method. We also present our results postinjection of heat-denatured albumin or asialofetuin; the livers from studies on the comparative fates of 12?- and [“HIRAF- were homogenized in 4 volumes of H20, frozen, and thawed four to labeled proteins in viuo, as a test of our hypothesis that RAF five times and then centrifuged at 12,000 x g for 30 min.
Recommended publications
  • Soluble Carbohydrates in Two Buffalograss Cultivars with Contrasting Freezing Tolerance
    J. AMER. SOC. HORT. SCI. 127(1):45–49. 2002. Soluble Carbohydrates in Two Buffalograss Cultivars with Contrasting Freezing Tolerance S. Ball, Y.L. Qian,1 and C. Stushnoff Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173 DDITIONAL INDEX WORDS A . Buchloe dactyloides, cold hardiness, fructose, glucose, raffinose, sucrose, LT50 ABSTRACT. No information is available regarding endogenous soluble carbohydrate accumulation in buffalograss [Buchloe dactyloides (Nutt.) Engelm.] during cold acclimation. The objective of this study was to determine composition of soluble carbohydrates and their relationship to freezing tolerance in two buffalograss cultivars, 609 and NE 91-118, with different freezing tolerances. The experiment was conducted under natural cold acclimation conditions in two consecutive years in Fort Collins, Colo. Based upon average LT50 (subfreezing temperature resulting in 50% mortality) from seven sampling intervals in 1998–99 and six sampling intervals in 1999–2000, ‘NE 91-118’ survived 4.5 °C and 4.9 °C colder temperatures than ‘609’, during the 1998-1999 and 1999–2000 winter seasons, respectively. Glucose, fructose, sucrose, and raffinose were found in both cultivars in both years, and were generally higher in acclimated than pre- and post-acclimated stolons. Stachyose was not present in sufficient quantities for quantification. Cultivar NE 91-118 contained 63% to 77% more glucose and 41% to 51% more raffinose than ‘609’ in the 1998–99 and 1999–2000 winter seasons, respectively. In 1999–2000, fructose content in ‘NE 91-118’ was significantly higher than that of ‘609’. A significant negative correlation was found between LT50 vs. all carbohydrates in 1999–2000, and LT50 vs.
    [Show full text]
  • GRAS Notice 896, Alpha-Galacto-Oligosaccharides
    GRAS Notice (GRN) No. 896 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory NOV 1 8 2019 OFFICE OF FOOD ADDITI\/t: SAFETY GENERALLY RECOGNIZED AS SAFE (GRAS) NOTIFICATION FOR ALPHA-GALACTO­ OLIGOSACCHARIDES (ALPHAGOS®) IN CONVENTIONAL FOODS AND BEVERAGES AND NON-EXEMPT INFANT FORMULAS Prepared for: Olygose Pare Technologique des Rives de l'Oise BP 50149, F-60201 Compiegne Cedex France Prepared by: Spherix Consulting Group, Inc. 11821 Parklawn Drive, Suite 310 Rockville, MD 20852 USA November 13, 2019 GRAS Notification for the Use of alpha-GOS November 13, 2019 Prepared for Olygose TABLE OF CONTENTS I. SIGNED STATEMENT OF THE CONCLUSION OF GENERALLY RECOGNIZED AS SAFE (GRAS) AND CERTIFICATION OF CONFORMITY TO 21 CFR §170.205-170.260 .... 1 A. SUBMISSION OF GRAS NOTICE .................................................................................1 B. NAME AND ADDRESS OF THE SPONSOR ................................................................1 C. COMMON OR USUAL NAME .......................................................................................1 D. TRADE SECRET OR CONFIDENTIAL INFORMATION ............................................1 E. INTENDED USE ..............................................................................................................1 F. BASIS FOR GRAS DETERMINATION .........................................................................1 G. PREMARKET APPROVAL ............................................................................................3 H. AVAILABILITY OF
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0028333 A1 Piatesi Et Al
    US 20120028333A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0028333 A1 Piatesi et al. (43) Pub. Date: Feb. 2, 2012 (54) USE OF ENZYMES TO REDUCE ALDEHYDES (30) Foreign Application Priority Data FROMALDEHYDE-CONTAINING PRODUCTS Apr. 7, 2009 (EP) .................................. O9157522.5 Publication Classification (76) Inventors: Andrea Piatesi, Mannheim (DE); (51) Int. Cl. Tilo Habicher, Speyer (DE); CI2N 9/02 (2006.01) Michael Bischel, Worms (DE); CI2N I/00 (2006.01) Li-Wen Wang, Mannheim (DE): CI2N 15/63 (2006.01) Jirgen Reichert, Limburgerhof A62D 3/02 (2007.01) (DE); Rainer Packe-Wirth, C7H 2L/04 (2006.01) Trostberg (DE); Kai-Uwe (52) U.S. Cl. ... 435/189: 435/262:536/23.2:435/320.1; Baldenius, Heidelberg (DE); Erich 435/243 Kromm, Weisenheim am Sand (57) ABSTRACT (DE); Stefan Häfner, Speyer (DE); Carsten Schwalb. Mannheim (DE); The invention relates to the use of an enzyme preparation Hans Wolfgang Höffken, which catalyzes the degradation of formaldehyde for reduc Ludwigshafen (DE) ing the formaldehyde content in a formaldehyde-containing formulation. In a preferred embodiment, the enzyme prepa ration contains a formaldehyde dismutase from a Pseudomo (21) Appl. No.: 13/262,662 nas putida Strain. Further, the invention refers to a process for reducing the formaldehyde content in cross-linking agents for textile finishing or in polymer dispersions used, e.g. in con (22) PCT Filed: Mar. 31, 2010 struction chemistry. Further the invention relates to the use of an enzyme preparation which catalyzes the degradation of (86). PCT No.: PCT/EP1OAS4284 aldehydes for reducing the formaldehyde content in an alde hyde-containing formulation.
    [Show full text]
  • Sucrose/ Glucose
    www.megazyme.com RAFFINOSE/ SUCROSE/ GLUCOSE ASSAY PROCEDURE K-RAFGL 04/18 (120 Assays per Kit) © Megazyme 2018 INTRODUCTION: Grain legumes are an important component of both human and livestock diets. Galactosyl-sucrose oligosaccharides (raffinose, stachyose and verbascose) are major components in many food legumes,1 and the anti-nutritional activity of grain legumes is frequently associated with the presence of these oligosaccharides.2 Galactosyl-sucrose oligosaccharides are not hydrolysed in the upper gut due to the absence of α-galactosidase. In the lower intestine they are metabolised by bacterial action, producing methane, hydrogen and carbon dioxide, which lead to flatulence and diarrhoea. Galactosyl- sucrose oligosaccharides are thus a factor limiting the use of grain legumes in monogastric diets.3 Several solvents have been employed for the extraction of galactosyl- sucrose oligosaccharides from legume-seed flours. These are generally water/alcohol mixtures. Before (or concurrent with) extraction, it is vital that endogenous α-galactosidase and invertase are inactivated. This can be achieved by refluxing the flour in ethanol or in an aqueous ethanol mixture before the flour is subjected to aqueous extraction. Identification and quantification of the extracted galactosyl- sucrose oligosaccharides have been achieved using an array of chromatographic procedures, however many of these methods are, at best, semi-quantitative. Chromatographic procedures employing high performance liquid chromatography and low pressure liquid chromatography (using Bio-Gel P2) are quantitative, but can be time consuming, particularly in the area of sample preparation. It is well known that raffinose, stachyose and verbascose are hydrolysed by α-galactosidase to D-galactose and sucrose. Biochemical kits for the measurement of raffinose are commercially available.
    [Show full text]
  • YKL107W from Saccharomyces Cerevisiae Encodes a Novel Aldehyde Reductase for Detoxification of Acetaldehyde, Glycolaldehyde, and Furfural
    YKL107W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of acetaldehyde, glycolaldehyde, and furfural Hanyu Wang, Qian Li, Zhengyue Zhang, Chang Zhou, Ellen Ayepa, Getachew Tafere Abrha, Xuebing Han, Xiangdong Hu, Xiumei Yu, et al. Applied Microbiology and Biotechnology ISSN 0175-7598 Volume 103 Number 14 Appl Microbiol Biotechnol (2019) 103:5699-5713 DOI 10.1007/s00253-019-09885-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Applied Microbiology and Biotechnology (2019) 103:5699–5713 https://doi.org/10.1007/s00253-019-09885-x BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS YKL107W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of acetaldehyde, glycolaldehyde, and furfural Hanyu Wang1 & Qian Li1 & Zhengyue Zhang1 &
    [Show full text]
  • Structures and Characteristics of Carbohydrates in Diets Fed to Pigs: a Review Diego M
    Navarro et al. Journal of Animal Science and Biotechnology (2019) 10:39 https://doi.org/10.1186/s40104-019-0345-6 REVIEW Open Access Structures and characteristics of carbohydrates in diets fed to pigs: a review Diego M. D. L. Navarro1, Jerubella J. Abelilla1 and Hans H. Stein1,2* Abstract The current paper reviews the content and variation of fiber fractions in feed ingredients commonly used in swine diets. Carbohydrates serve as the main source of energy in diets fed to pigs. Carbohydrates may be classified according to their degree of polymerization: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Digestible carbohydrates include sugars, digestible starch, and glycogen that may be digested by enzymes secreted in the gastrointestinal tract of the pig. Non-digestible carbohydrates, also known as fiber, may be fermented by microbial populations along the gastrointestinal tract to synthesize short-chain fatty acids that may be absorbed and metabolized by the pig. These non-digestible carbohydrates include two disaccharides, oligosaccharides, resistant starch, and non-starch polysaccharides. The concentration and structure of non-digestible carbohydrates in diets fed to pigs depend on the type of feed ingredients that are included in the mixed diet. Cellulose, arabinoxylans, and mixed linked β-(1,3) (1,4)-D-glucans are the main cell wall polysaccharides in cereal grains, but vary in proportion and structure depending on the grain and tissue within the grain. Cell walls of oilseeds, oilseed meals, and pulse crops contain cellulose, pectic polysaccharides, lignin, and xyloglucans. Pulse crops and legumes also contain significant quantities of galacto-oligosaccharides including raffinose, stachyose, and verbascose.
    [Show full text]
  • The Utilization of Sugars by Fungi Virgil Greene Lilly
    West Virginia Agricultural and Forestry Experiment Davis College of Agriculture, Natural Resources Station Bulletins And Design 1-1-1953 The utilization of sugars by fungi Virgil Greene Lilly H. L. Barnett Follow this and additional works at: https://researchrepository.wvu.edu/ wv_agricultural_and_forestry_experiment_station_bulletins Digital Commons Citation Lilly, Virgil Greene and Barnett, H. L., "The utilization of sugars by fungi" (1953). West Virginia Agricultural and Forestry Experiment Station Bulletins. 362T. https://researchrepository.wvu.edu/wv_agricultural_and_forestry_experiment_station_bulletins/629 This Bulletin is brought to you for free and open access by the Davis College of Agriculture, Natural Resources And Design at The Research Repository @ WVU. It has been accepted for inclusion in West Virginia Agricultural and Forestry Experiment Station Bulletins by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Digitized by the Internet Archive in 2010 with funding from Lyrasis IVIembers and Sloan Foundation http://www.archive.org/details/utilizationofsug362lill ^ni^igaro mU^ 'wmSS'"""' m^ r^' c t» WES: VIRGINIA UNIVERSITY AGRICULTURAL EXPERIMENT STAl. luiietin I62T 1 June 1953 ; The Utilization of Sugars by Fungi by Virgil Greene Lilly and H. L. Barnett WEST VIRGINIA UNIVERSITY AGRICULTURAL EXPERIMENT STATION ACKNOWLEDGMENT The authors wish to thank research assist- ants Miss Janet Posey and Mrs. Betsy Morris Waters for their faithful and conscientious help during some of these experiments. THE AUTHORS H. L. Barnett is Mycologist at the West Virginia University Agricultural Experiment Station and Professor of Mycology in the College of Agriculture, Forestry, and Home Economics. Virgil Greene Lilly is Physiol- ogist at the West Virginia University Agricul- tural Experiment Station and Professor of Physiology in the College of Agriculture, Forestry, and Home Economics.
    [Show full text]
  • 154581A0.Pdf
    No. 3914, NOVEMBER 4, 1944 NATURE 581 Alleged Role of Fructofuranose in the ture of fructofuranoses and fructopyranoses. The recent demonstration that glucose-1-phosphate (Cori Synthesis of Levan ester) and fructose form a dynamic equilibrium with THE view was long widely entertained that cells sucrose and phosphoric acid in the presence of a. synthesize macromolecules of polysaccharides and specific enzyme8 corroborates this view. Addition of proteins by a reversion .of the process of hydrolysis. fructose to sucrose does not inhibit levan production It has been suggested accordingly that the synthesis from the latter, yet fructose itself, although it pre­ of the polyfructoside levan specifically from aldo­ sumably contains ready fructofuranose, is not con­ side< >fructofuranosides (sucrose, raffinose) involves verted into levan by levansucrase7 • Similarly, levan­ two distinct steps : first, hydrolysis of the substrate ; sucrase fails to form levan from reaction mixtures secondly, polymerization of fructofuranose b;r a con­ in which fructofuranose is sustainedly liberated in densation involving removal of water1• Bacteria statu nascendi, for example, in reaction mixtures of which form levan from sucrose do so also from methyl gamma fructoside + yeast invertase, and of raffinose•. This polymerative type of sucrose de­ inulin inulase. gradation is concurrent with an ordinary hydrolytic (c) Extracts of an Aerobacter, although they pro­ inversions·'· The same banteria ferment !evans. duce levan from sucrose and hydro'yse the latter as Investigators might be tempted by these correlations well, do not hydrolyse levan. Thus they contain to consider the enzyme system, levansucrase, to be levansucrase and invertase but no polyfructosidase but a mixture of invertase and polyfructosidase.
    [Show full text]
  • Rapid HPLC Method for Determination of Isomaltulose in The
    foods Article ArticleRapid HPLC Method for Determination of RapidIsomaltulose HPLC Methodin the Presence for Determination of Glucose, of Sucrose, Isomaltuloseand Maltodextrins in the in Presence Dietary of Supplements Glucose, Sucrose, and Maltodextrins in Dietary Supplements Tomáš Crha and Jiří Pazourek * Tomáš Crha and Jiˇrí Pazourek * Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, CZ-612 00 Brno, DepartmentCzech Republic; of Chemical [email protected] Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, CZ-612* Correspondence: 00 Brno, Czech pazourekj@ph Republic; [email protected]; Tel.: +420-54156-2940 * Correspondence: [email protected]; Tel.: +420-54156-2940 Received: 19 July 2020; Accepted: 15 August 2020; Published: 24 August 2020 Received: 19 July 2020; Accepted: 15 August 2020; Published: 24 August 2020 Abstract: This paper presents a rapid HPLC method for the separation of isomaltulose (also known Abstract:as Palatinose)This paper from presents other acommon rapid HPLC edible method carb forohydrates the separation such ofas isomaltulose sucrose, glucose, (also known and asmaltodextrins, Palatinose) from which other are common commonly edible present carbohydrates in food and such dietary as sucrose, supplements. glucose, and This maltodextrins, method was whichapplied are to commonly determine present isomaltulose in food and in dietaryselected supplements. food supplements This method for special was applied diets toand determine athletic isomaltuloseperformance. inDue selected to the selectivity food supplements of the separation for special system, diets this and method athletic can performance. also be used for Due rapid to theprofiling selectivity analysis of the of separationmono-, di-, system, and oligosaccharides this method can in alsofood be.
    [Show full text]
  • Safety Assessment of Microbial Polysaccharide Gums As Used in Cosmetics
    Safety Assessment of Microbial Polysaccharide Gums as Used in Cosmetics Status: Final Report for public distribution Release Date: October 5, 2012 Panel Meeting Date: September 10-11, 2012 The 2012 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is F. Alan Andersen, Ph.D. This report was prepared by Monice M. Fiume, Senior Scientific Analyst/Writer, and Bart A. Heldreth, Ph.D., Chemist, CIR. Cosmetic Ingredient Review 1101 17th Street, NW, Suite 412 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] ABSTRACT The CIR Expert Panel assessed the safety of 34 microbial polysaccharide gums for use in cosmetics, finding that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. The microbial polysaccharide gums named in this report have a variety of reported functions in cosmetics, including emulsion stabilizer, film former, binder, viscosity increasing agent, and skin conditioning agent. The Panel reviewed available animal and clinical data in making its determination of safety. INTRODUCTION This assessment is a review of information relevant to the safety of 34 microbial polysaccharide gums for use in cosmetic formula- tions. Reported functions for these ingredients include emulsion stabilizer, film former, binder, viscosity increasing agent, and skin conditioning agent.
    [Show full text]
  • Carbohydrate, Oligosaccharide, and Organic Acid Separations
    Carbohydrate, Oligosaccharide, and Organic Acid Separations Long column lifetimes. Accurate, reproducible analysis. Trust Rezex™ For Excellent Resolution and Reproducibility of Sugars, Starches, and Organic Acids Phenomenex Rezex HPLC ion-exclusion columns are guaranteed to give you the performance you need. From drug formulation and excipient analysis to quality control testing of finished food products, Rezex columns consistently provide accurate and reproducible results. “ I have been using Phenomenex Rezex …for sugar quantitation in the last few years, we are very happy with the resolution of this column, plus a short running time. ” - Global Leader, Food & Beverage Ingredient Production Try Rezex Risk Free! Rezex is a guaranteed alternative to: • Bio-Rad® Aminex® If you are not completely satisfied with the performance Waters® Sugar-Pak™ • of any Rezex column, as compared to a competing Supelco® SUPELCOGEL™ product of the same size and phase, simply return the • Rezex column with your comparative data within 45 • Transgenomic® CARBOSep™ days for a FULL REFUND. Experience the Rezex™ Performance Advantage Broad Range of Phases to Perfectly Suit Your Application Needs .........................................2 Column Selection – Variety Gives You the Power of Optimization .................................................3 See the Difference! The Rezex Performance Advantage Sharper Peak Shape = Easy & Accurate Quantitation .........................................................4 Lower Backpressure = Longer Column Lifetimes & Faster
    [Show full text]
  • Assessment and Alleviation of Raffinose Family Oligosaccharides (Rfos) of Seed- and Sprout-Flours of Soybean [Glycine Max (L.) Merr.] - a Commercial Aspect
    International Food Research Journal 26(1): 105 - 116 (February 2019) Journal homepage: http://www.ifrj.upm.edu.my From seed to feed: assessment and alleviation of Raffinose Family Oligosaccharides (RFOs) of seed- and sprout-flours of soybean [Glycine max (L.) Merr.] - a commercial aspect *Raman, M., Saiprasad, G. V. S. and Madhavakrishna, K. ITC Limited, ITC Life Science and Technology Centre (LSTC), Peenya Industrial Area, 1st Phase, Bengaluru-560058, Karnataka, India Article history Abstract Received: 8 September, 2017 The purpose of the present work was to propose a commercially viable method for the Received in revised form: reduction of flatulence-inducing Raffinose Family Oligosaccharides (RFOs) in soybean 26 February, 2018 mature seed- and sprout-flours. For the same, the industrial application of purified food-grade Accepted: 20 June, 2018 α-galactosidase (α-GAL) from Aspergillus niger was evaluated by calorimetric and high- performance liquid chromatography (HPLC) methods. From mature seed to sprout formation with ~80% germination at a pilot-scale, an inherent decline of 76-80% in total RFOs [with a respective decline of 84%, 79% and 64% in corresponding raffinose (RAF), stachyose (STA) and verbascose (VER) content] was observed. Following treatment with exogenous food-grade Keywords α-GAL at an optimised level, a significant reduction of 98-99% and 93-96% in total RFOs (with Soybean, sugars a respective decline of 95%, 99%, 100% and 84%, 99%, 80% in corresponding RAF, STA and RFOs VER content) was observed in mature seed- and sprout-flours, respectively. Herein we reported Anti-nutritional factors for the first time, a simple and sequential combination of two processing methods (sprouting HPLC followed by α-GAL hydrolysis) that could open up the commercial use of soybean flour to feed- and food-industries to take advantage of its functional and nutritional properties, without any anti-nutritional problems usually associated with it.
    [Show full text]