Affine-Scaling Method, 202–204, 206, 210 Poor Performance Of
Index affine-scaling method, 202–204, 206, 210 blocking variable, 48 poor performance of, 203 breakpoint, 163 steplength choice, 203 approximation problems, 218–227 canonical form, 8, 16, 45, 117, 120, 123, 1-norm, 221–224 129, 130, 134, 138, 139, 150, 2-norm. See least-squares problems 151, 156, 195, 197 ∞-norm. See Chebyshev approximation dual of, 109 for linear equalities, 218–223 for problems with bound constraints, with hard constraints, 223–224, 227 130 arc, 12–14, 144 centering parameter, 206, 214 central path, 205 back substitution. See triangular substitution Chebyshev approximation, 219–221, 223 basic feasible solution, 118 Cholesky factorization, 209, 212 as iterates of revised simplex method, classification, 11–12, 230–235 123 labeled points, 230 association with basis matrix, 120–121 testing set, 235 association with vertex, 121–123 training set, 235 degenerate, 120 tuning set, 235 existence, 119–120 classifier, 230 initial, 129, 134–139 linear, 230 basic solution, 118 nonlinear, 233, 234 basis, 117, 126, 152 complementarity, 101–102, 178, 237 for problems with bound constraints, almost-, 178, 179 130 existence of strictly complementary initial, 125, 134–137 primal-dual solution, 114–115 optimal, 129, 152–156 strict, 101 basis matrix, 52, 118, 120, 123, 139, 140, complementary slackness. 154 See complementarity for network linear program, 149 concave function, 161, 244 LU factorization of, 139–142 constraints, 1 big M method, 110–112 active, 14 behavior on infeasible problems, 112 bounds, 74–75 motivation, 110–111 equality, 72–87 proof of effectiveness, 111 inactive, 14 specification, 111–112 inequality, 72–87 bimatrix game, 185 convex combination, 239, 241 Bland’s rule.
[Show full text]