Variants of the Simplex Algorithm in Linear Programming Problems with a Special Structure Carmen Recio Valcarce Trabajo De Fin D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Revised Primal Simplex Method Katta G
6.1 Revised Primal Simplex method Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor First put LP in standard form. This involves floowing steps. • If a variable has only a lower bound restriction, or only an upper bound restriction, replace it by the corresponding non- negative slack variable. • If a variable has both a lower bound and an upper bound restriction, transform lower bound to zero, and list upper bound restriction as a constraint (for this version of algorithm only. In bounded variable simplex method both lower and upper bound restrictions are treated as restrictions, and not as constraints). • Convert all inequality constraints as equations by introducing appropriate nonnegative slack for each. • If there are any unrestricted variables, eliminate each of them one by one by performing a pivot step. Each of these reduces no. of variables by one, and no. of constraints by one. This 128 is equivalent to having them as permanent basic variables in the tableau. • Write obj. in min form, and introduce it as bottom row of original tableau. • Make all RHS constants in remaining constraints nonnega- tive. 0 Example: Max z = x1 − x2 + x3 + x5 subject to x1 − x2 − x4 − x5 ≥ 2 x2 − x3 + x5 + x6 ≤ 11 x1 + x2 + x3 − x5 =14 −x1 + x4 =6 x1 ≥ 1;x2 ≤ 1; x3;x4 ≥ 0; x5;x6 unrestricted. 129 Revised Primal Simplex Algorithm With Explicit Basis Inverse. INPUT NEEDED: Problem in standard form, original tableau, and a primal feasible basic vector. Original Tableau x1 ::: xj ::: xn −z a11 ::: a1j ::: a1n 0 b1 . am1 ::: amj ::: amn 0 bm c1 ::: cj ::: cn 1 α Initial Setup: Let xB be primal feasible basic vector and Bm×m be associated basis. -
Chapter 6: Gradient-Free Optimization
AA222: MDO 133 Monday 30th April, 2012 at 16:25 Chapter 6 Gradient-Free Optimization 6.1 Introduction Using optimization in the solution of practical applications we often encounter one or more of the following challenges: • non-differentiable functions and/or constraints • disconnected and/or non-convex feasible space • discrete feasible space • mixed variables (discrete, continuous, permutation) • large dimensionality • multiple local minima (multi-modal) • multiple objectives Gradient-based optimizers are efficient at finding local minima for high-dimensional, nonlinearly- constrained, convex problems; however, most gradient-based optimizers have problems dealing with noisy and discontinuous functions, and they are not designed to handle multi-modal problems or discrete and mixed discrete-continuous design variables. Consider, for example, the Griewank function: n n x2 f(x) = P i − Q cos pxi + 1 4000 i i=1 i=1 (6.1) −600 ≤ xi ≤ 600 Mixed (Integer-Continuous) Figure 6.1: Graphs illustrating the various types of functions that are problematic for gradient- based optimization algorithms AA222: MDO 134 Monday 30th April, 2012 at 16:25 Figure 6.2: The Griewank function looks deceptively smooth when plotted in a large domain (left), but when you zoom in, you can see that the design space has multiple local minima (center) although the function is still smooth (right) How we could find the best solution for this example? • Multiple point restarts of gradient (local) based optimizer • Systematically search the design space • Use gradient-free optimizers Many gradient-free methods mimic mechanisms observed in nature or use heuristics. Unlike gradient-based methods in a convex search space, gradient-free methods are not necessarily guar- anteed to find the true global optimal solutions, but they are able to find many good solutions (the mathematician's answer vs. -
A Generalized Dual Phase-2 Simplex Algorithm1
A Generalized Dual Phase-2 Simplex Algorithm1 Istvan´ Maros Department of Computing, Imperial College, London Email: [email protected] Departmental Technical Report 2001/2 ISSN 1469–4174 January 2001, revised December 2002 1This research was supported in part by EPSRC grant GR/M41124. I. Maros Phase-2 of Dual Simplex i Contents 1 Introduction 1 2 Problem statement 2 2.1 The primal problem . 2 2.2 The dual problem . 3 3 Dual feasibility 5 4 Dual simplex methods 6 4.1 Traditional algorithm . 7 4.2 Dual algorithm with type-1 variables present . 8 4.3 Dual algorithm with all types of variables . 9 5 Bound swap in dual 11 6 Bound Swapping Dual (BSD) algorithm 14 6.1 Step-by-step description of BSD . 14 6.2 Work per iteration . 16 6.3 Degeneracy . 17 6.4 Implementation . 17 6.5 Features . 18 7 Two examples for the algorithmic step of BSD 19 8 Computational experience 22 9 Summary 24 10 Acknowledgements 25 Abstract Recently, the dual simplex method has attracted considerable interest. This is mostly due to its important role in solving mixed integer linear programming problems where dual feasible bases are readily available. Even more than that, it is a realistic alternative to the primal simplex method in many cases. Real world linear programming problems include all types of variables and constraints. This necessitates a version of the dual simplex algorithm that can handle all types of variables efficiently. The paper presents increasingly more capable dual algorithms that evolve into one which is based on the piecewise linear nature of the dual objective function. -
The Simplex Algorithm in Dimension Three1
The Simplex Algorithm in Dimension Three1 Volker Kaibel2 Rafael Mechtel3 Micha Sharir4 G¨unter M. Ziegler3 Abstract We investigate the worst-case behavior of the simplex algorithm on linear pro- grams with 3 variables, that is, on 3-dimensional simple polytopes. Among the pivot rules that we consider, the “random edge” rule yields the best asymptotic behavior as well as the most complicated analysis. All other rules turn out to be much easier to study, but also produce worse results: Most of them show essentially worst-possible behavior; this includes both Kalai’s “random-facet” rule, which is known to be subexponential without dimension restriction, as well as Zadeh’s de- terministic history-dependent rule, for which no non-polynomial instances in general dimensions have been found so far. 1 Introduction The simplex algorithm is a fascinating method for at least three reasons: For computa- tional purposes it is still the most efficient general tool for solving linear programs, from a complexity point of view it is the most promising candidate for a strongly polynomial time linear programming algorithm, and last but not least, geometers are pleased by its inherent use of the structure of convex polytopes. The essence of the method can be described geometrically: Given a convex polytope P by means of inequalities, a linear functional ϕ “in general position,” and some vertex vstart, 1Work on this paper by Micha Sharir was supported by NSF Grants CCR-97-32101 and CCR-00- 98246, by a grant from the U.S.-Israeli Binational Science Foundation, by a grant from the Israel Science Fund (for a Center of Excellence in Geometric Computing), and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University. -
11.1 Algorithms for Linear Programming
6.854 Advanced Algorithms Lecture 11: 10/18/2004 Lecturer: David Karger Scribes: David Schultz 11.1 Algorithms for Linear Programming 11.1.1 Last Time: The Ellipsoid Algorithm Last time, we touched on the ellipsoid method, which was the first polynomial-time algorithm for linear programming. A neat property of the ellipsoid method is that you don’t have to be able to write down all of the constraints in a polynomial amount of space in order to use it. You only need one violated constraint in every iteration, so the algorithm still works if you only have a separation oracle that gives you a separating hyperplane in a polynomial amount of time. This makes the ellipsoid algorithm powerful for theoretical purposes, but isn’t so great in practice; when you work out the details of the implementation, the running time winds up being O(n6 log nU). 11.1.2 Interior Point Algorithms We will finish our discussion of algorithms for linear programming with a class of polynomial-time algorithms known as interior point algorithms. These have begun to be used in practice recently; some of the available LP solvers now allow you to use them instead of Simplex. The idea behind interior point algorithms is to avoid turning corners, since this was what led to combinatorial complexity in the Simplex algorithm. They do this by staying in the interior of the polytope, rather than walking along its edges. A given constrained linear optimization problem is transformed into an unconstrained gradient descent problem. To avoid venturing outside of the polytope when descending the gradient, these algorithms use a potential function that is small at the optimal value and huge outside of the feasible region. -
Matroidal Subdivisions, Dressians and Tropical Grassmannians
Matroidal subdivisions, Dressians and tropical Grassmannians vorgelegt von Diplom-Mathematiker Benjamin Frederik Schröter geboren in Frankfurt am Main Von der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Wilhelm Stannat Gutachter: Prof. Dr. Michael Joswig Prof. Dr. Hannah Markwig Senior Lecturer Ph.D. Alex Fink Tag der wissenschaftlichen Aussprache: 17. November 2017 Berlin 2018 Zusammenfassung In dieser Arbeit untersuchen wir verschiedene Aspekte von tropischen linearen Räumen und deren Modulräumen, den tropischen Grassmannschen und Dressschen. Tropische lineare Räume sind dual zu Matroidunterteilungen. Motiviert durch das Konzept der Splits, dem einfachsten Fall einer polytopalen Unterteilung, wird eine neue Klasse von Matroiden eingeführt, die mit Techniken der polyedrischen Geometrie untersucht werden kann. Diese Klasse ist sehr groß, da sie alle Paving-Matroide und weitere Matroide enthält. Die strukturellen Eigenschaften von Split-Matroiden können genutzt werden, um neue Ergebnisse in der tropischen Geometrie zu erzielen. Vor allem verwenden wir diese, um Strahlen der tropischen Grassmannschen zu konstruieren und die Dimension der Dressschen zu bestimmen. Dazu wird die Beziehung zwischen der Realisierbarkeit von Matroiden und der von tropischen linearen Räumen weiter entwickelt. Die Strahlen einer Dressschen entsprechen den Facetten des Sekundärpolytops eines Hypersimplexes. Eine besondere Klasse von Facetten bildet die Verallgemeinerung von Splits, die wir Multi-Splits nennen und die Herrmann ursprünglich als k-Splits bezeichnet hat. Wir geben eine explizite kombinatorische Beschreibung aller Multi-Splits eines Hypersimplexes. Diese korrespondieren mit Nested-Matroiden. Über die tropische Stiefelabbildung erhalten wir eine Beschreibung aller Multi-Splits für Produkte von Simplexen. -
Chapter 1 Introduction
Chapter 1 Introduction 1.1 Motivation The simplex method was invented by George B. Dantzig in 1947 for solving linear programming problems. Although, this method is still a viable tool for solving linear programming problems and has undergone substantial revisions and sophistication in implementation, it is still confronted with the exponential worst-case computational effort. The question of the existence of a polynomial time algorithm was answered affirmatively by Khachian [16] in 1979. While the theoretical aspects of this procedure were appealing, computational effort illustrated that the new approach was not going to be a competitive alternative to the simplex method. However, when Karmarkar [15] introduced a new low-order polynomial time interior point algorithm for solving linear programs in 1984, and demonstrated this method to be computationally superior to the simplex algorithm for large, sparse problems, an explosion of research effort in this area took place. Today, a variety of highly effective variants of interior point algorithms exist (see Terlaky [32]). On the other hand, while exterior penalty function approaches have been widely used in the context of nonlinear programming, their application to solve linear programming problems has been comparatively less explored. The motivation of this research effort is to study how several variants of exterior penalty function methods, suitably modified and fine-tuned, perform in comparison with each other, and to provide insights into their viability for solving linear programming problems. Many experimental investigations have been conducted for studying in detail the simplex method and several interior point algorithms. Whereas these methods generally perform well and are sufficiently adequate in practice, it has been demonstrated that solving linear programming problems using a simplex based algorithm, or even an interior-point type of procedure, can be inadequately slow in the presence of complicating constraints, dense coefficient matrices, and ill- conditioning. -
A Branch-And-Bound Algorithm for Zero-One Mixed Integer
A BRANCH-AND-BOUND ALGORITHM FOR ZERO- ONE MIXED INTEGER PROGRAMMING PROBLEMS Ronald E. Davis Stanford University, Stanford, California David A. Kendrick University of Texas, Austin, Texas and Martin Weitzman Yale University, New Haven, Connecticut (Received August 7, 1969) This paper presents the results of experimentation on the development of an efficient branch-and-bound algorithm for the solution of zero-one linear mixed integer programming problems. An implicit enumeration is em- ployed using bounds that are obtained from the fractional variables in the associated linear programming problem. The principal mathematical result used in obtaining these bounds is the piecewise linear convexity of the criterion function with respect to changes of a single variable in the interval [0, 11. A comparison with the computational experience obtained with several other algorithms on a number of problems is included. MANY IMPORTANT practical problems of optimization in manage- ment, economics, and engineering can be posed as so-called 'zero- one mixed integer problems,' i.e., as linear programming problems in which a subset of the variables is constrained to take on only the values zero or one. When indivisibilities, economies of scale, or combinatoric constraints are present, formulation in the mixed-integer mode seems natural. Such problems arise frequently in the contexts of industrial scheduling, investment planning, and regional location, but they are by no means limited to these areas. Unfortunately, at the present time the performance of most compre- hensive algorithms on this class of problems has been disappointing. This study was undertaken in hopes of devising a more satisfactory approach. In this effort we have drawn on the computational experience of, and the concepts employed in, the LAND AND DoIGE161 Healy,[13] and DRIEBEEKt' I algorithms. -
A Truncated SQP Algorithm for Large Scale Nonlinear Programming Problems
' : .v ' : V. • ' '^!V'> r" '%': ' W ' ::r'' NISTIR 4900 Computing and Applied Mathematics Laboratory A Truncated SQP Algorithm for Large Scale Nonlinear Programming Problems P.T. Boggs, J.W. Tolle, A.J. Kearsley August 1992 Technology Administration U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, MD 20899 “QC— 100 .U56 4900 1992 Jc. NISTIR 4900 A Truncated SQP Algorithm for Large Scale Nonlinear Programming Problems P. T. Boggs J. W. Tone A. J. Kearsley U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computing and Applied Mathematics Laboratory Applied and Computational Mathematics Division Gaithersburg, MD 20899 August 1992 U.S. DEPARTMENT OF COMMERCE Barbara Hackman Franklin, Secretary TECHNOLOGY ADMINISTRATION Robert M. White, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director si.- MT-- ’•,•• /'k /-.<• -Vj* #' ^ ( "> M !f>' J ' • ''f,i sgsHv.w,^. ^ , .!n'><^.'". tr 'V 10 i^ailCin'i.-'J/ > ' it i>1l • •»' W " %'. ' ' -fft ?" . , - '>! .-' .S A Truncated SQP Algorithm for Large Scale Nonlinear Programming Problems * Paul T. Boggs ^ Jon W. ToUe ^ Anthony J. Kearsley § August 4, 1992 Abstract We consider the inequality constrained nonlinear programming problem and an SQP algorithm for its solution. We are primarily concerned with two aspects of the general procedure, namely, the approximate solution of the quadratic program, and the need for an appropriate merit function. We first describe an (iterative) interior-point method for the quadratic programming subproblem that, no matter when it its terminated, yields a descent direction for a suggested new merit function. An algorithm based on ideas from trust-region and truncated Newton methods, is suggested and some of our preliminary numerical results are discussed. -
Practical Implementation of the Active Set Method for Support Vector Machine Training with Semi-Definite Kernels
PRACTICAL IMPLEMENTATION OF THE ACTIVE SET METHOD FOR SUPPORT VECTOR MACHINE TRAINING WITH SEMI-DEFINITE KERNELS by CHRISTOPHER GARY SENTELLE B.S. of Electrical Engineering University of Nebraska-Lincoln, 1993 M.S. of Electrical Engineering University of Nebraska-Lincoln, 1995 A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical Engineering and Computer Science in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Spring Term 2014 Major Professor: Michael Georgiopoulos c 2014 Christopher Sentelle ii ABSTRACT The Support Vector Machine (SVM) is a popular binary classification model due to its superior generalization performance, relative ease-of-use, and applicability of kernel methods. SVM train- ing entails solving an associated quadratic programming (QP) that presents significant challenges in terms of speed and memory constraints for very large datasets; therefore, research on numer- ical optimization techniques tailored to SVM training is vast. Slow training times are especially of concern when one considers that re-training is often necessary at several values of the models regularization parameter, C, as well as associated kernel parameters. The active set method is suitable for solving SVM problem and is in general ideal when the Hessian is dense and the solution is sparse–the case for the `1-loss SVM formulation. There has recently been renewed interest in the active set method as a technique for exploring the entire SVM regular- ization path, which has been shown to solve the SVM solution at all points along the regularization path (all values of C) in not much more time than it takes, on average, to perform training at a sin- gle value of C with traditional methods. -
A Bound Strengthening Method for Optimal Transmission Switching in Power Systems
1 A Bound Strengthening Method for Optimal Transmission Switching in Power Systems Salar Fattahi∗, Javad Lavaei∗;+, and Alper Atamturk¨ ∗ ∗ Industrial Engineering and Operations Research, University of California, Berkeley + Tsinghua-Berkeley Shenzhen Institute, University of California, Berkeley. Abstract—This paper studies the optimal transmission switch- transmission switches) in the system. Furthermore, The Energy ing (OTS) problem for power systems, where certain lines are Policy Act of 2005 explicitly addresses the “difficulties of fixed (uncontrollable) and the remaining ones are controllable siting major new transmission facilities” and calls for the via on/off switches. The goal is to identify a topology of the power grid that minimizes the cost of the system operation while utilization of better transmission technologies [2]. satisfying the physical and operational constraints. Most of the Unlike in the classical network flows, removing a line from existing methods for the problem are based on first converting a power network may improve the efficiency of the network the OTS into a mixed-integer linear program (MILP) or mixed- due to physical laws. This phenomenon has been observed integer quadratic program (MIQP), and then iteratively solving and harnessed to improve the power system performance by a series of its convex relaxations. The performance of these methods depends heavily on the strength of the MILP or MIQP many authors. The notion of optimally switching the lines of formulations. In this paper, it is shown that finding the strongest a transmission network was introduced by O’Neill et al. [3]. variable upper and lower bounds to be used in an MILP or Later on, it has been shown in a series of papers that the MIQP formulation of the OTS based on the big-M or McCormick incorporation of controllable transmission switches in a grid inequalities is NP-hard. -
Towards a Practical Parallelisation of the Simplex Method
Towards a practical parallelisation of the simplex method J. A. J. Hall 23rd April 2007 Abstract The simplex method is frequently the most efficient method of solv- ing linear programming (LP) problems. This paper reviews previous attempts to parallelise the simplex method in relation to efficient serial simplex techniques and the nature of practical LP problems. For the major challenge of solving general large sparse LP problems, there has been no parallelisation of the simplex method that offers significantly improved performance over a good serial implementation. However, there has been some success in developing parallel solvers for LPs that are dense or have particular structural properties. As an outcome of the review, this paper identifies scope for future work towards the goal of developing parallel implementations of the simplex method that are of practical value. Keywords: linear programming, simplex method, sparse, parallel comput- ing MSC classification: 90C05 1 Introduction Linear programming (LP) is a widely applicable technique both in its own right and as a sub-problem in the solution of other optimization problems. The simplex method and interior point methods are the two main approaches to solving LP problems. In a context where families of related LP problems have to be solved, such as integer programming and decomposition methods, and for certain classes of single LP problems, the simplex method is usually more efficient. 1 The application of parallel and vector processing to the simplex method for linear programming has been considered since the early 1970's. However, only since the beginning of the 1980's have attempts been made to develop implementations, with the period from the late 1980's to the late 1990's seeing the greatest activity.