Time-domain dual pulse coherent control with few-cycle strong-field pulses Contact
[email protected] W A Bryan and G. R. A. J. Nemeth C M Cacho, I C E Turcu and E Springate Department of Physics, Swansea University, Swansea, SA2 STFC Rutherford Appleton Laboratory, Harwell Science and 8PP, UK Innovation Campus, Didcot, Oxon., OX11 0QX, UK C R Calvert, R B King, J B Greenwood and I D Williams W R Newell School of Mathematics and Physics, Queen's University Belfast, Department of Physics and Astronomy, University College Belfast BT7 1NN, UK London, London WC1E 6BT, UK Quantum mechanics describes internal molecular dynamics in [7-9]. This process can be treated as a dynamic Raman or Stark terms of the amplitude and phase of vibrational wavepackets, process. In the former, multiphoton coupling between ground which are coherent superpositions of states and contain all and excited states as wavepacket oscillates causes a bond length information about the associated populations and phases. In the (hence time) dependent redistribution; the latter is a polarization energy or frequency domain, the quantum beating is observable of the molecular orbital by the dipole force leading to a time- by resonant photonic processes; in the temporal domain, this varying distortion of potential surfaces. The nuclear wavepacket interference results in characteristic time-varying motion. then propagates on the modified potential, and the diabaticity of Ultrafast laser systems generating near-infrared (NIR) pulses the process causes population transfer. In both cases, changing with durations of hundreds of femtoseconds allowed the first intensity, wavelength and intensity of control pulse influences observation of such wavepackets [1,2] with significant population transfer.