IUI 2017 • Recommender Systems March 13–16, 2017, Limassol, Cyprus Explaining Recommendations Based on Feature Sentiments in Product Reviews Li Chen Feng Wang Department of Computer Science, Hong Kong Department of Computer Science, Hong Kong Baptist University Baptist University Hong Kong, China Hong Kong, China
[email protected] [email protected] ABSTRACT serves to explain the recommendation process (i.e., the logic The explanation interface has been recognized important in of underlying algorithm) [16, 36, 2], or justify why the recom- recommender systems as it can help users evaluate recommen- mendation might be good for a user [37, 41, 15]. According to dations in a more informed way for deciding which ones are [14, 15, 39], the types and aims of explanation can be different relevant to their interests. In different decision environments, in different recommender systems. For instance, in collabo- the specific aim of explanation can be different. In high- rative filtering (CF) systems, the explanation can be in form investment product domains (e.g., digital cameras, laptops) of a histogram with grouping of neighbors in different rat- for which users usually attempt to avoid financial risk, how to ing categories (high, medium and low) for increasing system support users to construct stable preferences and make better transparency and persuasiveness [16]. Keywords or user-tags decisions is particularly crucial. In this paper, we propose based approaches can help users to make qualified and good a novel explanation interface that emphasizes explaining the decisions in CF or content-based recommender systems [37, tradeoff properties within a set of recommendations in terms of 41].