Product Recommendations in E-Commerce Retailing Applications

Total Page:16

File Type:pdf, Size:1020Kb

Load more

FORSCHUNGSERGEBNISSE DER WIRTSCHAFTSUNIVERSITÄT WIEN Nicolas Knotzer Product Recommendations in E-Commerce Retailing Applications Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access FORSCHUNGSERGEBNISSE DER WIRTSCHAFTSUNIVERSITÄT WIEN Nicolas Knotzer Product Recommendations in E-Commerce Retailing Applications The book deals with product recommendations generated by information systems referred to as recommender systems. Recommender systems assist consumers in making product choices by providing recommendations of the range of products and services offered in an online purchase environment. The quantitative research study investigates the influence of psychographic and sociodemographic determinants on the interest of consumers in personalized online book recommendations. The author presents new findings regarding the interest in recommendations, importance of product reviews for the decision process, motives for submitting ratings as well as comments, and the delivery of recommendations. The results show that opinion seeking, opinion leading, domain specific innovativeness, online shopping experience, and age are important factors in respect of the interest in personalized recommendations. Nicolas Knotzer studied business administration with the focus on information systems, management control and project management. From 2001 to 2006 he joined the Institute for Management Information Systems at the Vienna University of Economics and Business Administration. The author received his doctoral degree in 2006. Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access Product Recommendations in E-commerce Retailing Applications Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access Forschungsergebnisse der Wirtschaftsuniversitat Wien Band 17 PETER LANG Frankfurt am Main · Berlin · Bern• · Bruxelles· New York· Oxford · Wien Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access Nicolas Knotzer Product Recommendations in E-commerce Retailing Applications £ PETER LANG lnternationaler Verlag der Wissenschaften Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access Blbllographlc Information published by the Deutsche Natlonalblbllothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the internet at <http://www.d-nb.de>. Open Access: The online version of this publication is published on www.peterlang.com and www.econstor.eu under the interna- tional Creative Commons License CC-BY 4.0. Learn more on how you can use and share this work: http://creativecommons. org/licenses/by/4.0. Q) =!! This book is available Open Access thanks to the kind support of ZBW – Leibniz-Informationszentrum Wirtschaft. Cover design: Atelier Platen according to a design of the advertising agency Publique. University logo of the Vienna University of Economics and Business Administration. Printed with kindly permission of the University. Sponsored by the Vienna University of Economics and Business Administration. ISSN 1613-3056 ISBN 978-3-631-56622-0 ISBN 978-3-631-75452-8 (eBook) © Peter Lang GmbH lnternationaler Verlag der Wissenschaften Frankfurt am Main 2008 All rights reserved. All parts of this publication are protected by copyright. Any utilisation outside the strict limits of the copyright law, without the permission of the publisher, is forbidden and liable to prosecution. This applies in particular to reproductions, translations, microfilming, and storage and processing in electronic retrieval systems. Printed in Germany 1 2 3 4 5 7 www.peterlang.de Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access Abstract The book deals with product recommendations generated by information sys- tems referred to as recommender systems. Recommender systems assist con- sumers in making product choices by providing recommendations of the range of products and services offered in an online purchase environment. The quan- titative research study investigates the influence of psychographic and sociode- mographic determinants on the interest of consumers in personalized online book recommendations. The book starts with an introductory chapter that sets out the research goal and presents the organization of the work. In Chapter 2 the author establishes working definitions, introduces a general classification and presents application models and business goals of recommender systems. Further, a model of the consumer decision process and the relevancy of virtual commwuties for recommendation purposes is described. Chapter 3 reviews functional aspects of recommender systems. Input and output data, measure- ment scales for preference elicitation as well as recommendation methods a.re elaborated in detail. Chapter 4 describes the research model, the hypothe- sis, and the methodology. The results of the empirical study a.re presented in Chapter 5. Structural equation modeling and regression analysis a.re used to verify the hypotheses. The author presents new findings regarding the interest in recommendations, importance of product reviews for the decision process, motives for submitting ratings and comments, and the delivery of recommen- dations. In particular the results show that ophuon seeking, opinion leading, domain specific innovativeness, online shopping experience, and age are impor- tant factors in respect of the interest in online recommendations. The book clos«:>,s with an chapter that summarizes the results, shows limitations of the research conducted, and points out directions for further research. Nicolas Knotzer - 978-3-631-75452-8 V Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access Acknowledgements Foremost, I would like to thank my supervisors Prof. Hans Robert Hansen and Prof. Gustaf Neumann. I am very grateful for the discussions, suggestions, and insights that helped me to complete this doctoral dissertation. In the last four years Prof. Hansen has given me a very productive and agreeable working environment and helped me to grow as a researcher as well as a person. Further, I would like to thank my colleagues at the Institute for Manage- ment Information Systems and the Institute for Information Systems and New Media, especially Maria Madlberger, Bernd Simon, Horst 1\·eiblmaier, and Christina Stahl. Last, but not least, my thanks go to my family and Katrin. I am very indebted to you. Without your support and patience the writing of this book would have not been possible. Nicolas Knotzer - 978-3-631-75452-8 vii Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access Contents 1 Introduction 1 1.1 Research Goal . 1 1.2 Contents and Organization . 3 2 Recommender Systems - Definition, Classification, and Mar- keting Perspectives 5 2.1 Working Definitions . 6 2.2 Classification . 7 2.3 Application Models of Recommender Systems 11 2.3.1 Broad Recommendation Lists ... 11 2.3.2 Customer Comments and Ratings . 12 2.3.3 Notification Services ........ 14 2.3.4 Product Associated Recommendations 15 2.3.5 Persistent Personalization 16 2.4 The Consumer Decision Process 18 2.4.1 Need Recognition . 20 2.4.2 Information Search 20 Nicolas Knotzer - 978-3-631-75452-8 ix Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access CONTENTS 2.4.3 Pre-Purchase Evaluation of Alternatives 23 2.4.4 Purchase ........ 28 2.4.5 Post-Pw-chase Processes 31 2.5 Virtual Communities . 34 2.5.1 Characteristics and Benefits 35 2.5.2 Virtual Communities and Network Effects 36 2.5.3 Community Building . 38 3 Recommender Systems - Functional Perspectives 47 3.1 Input Data of Recommender Systems . 48 3.2 Output Data of Recommender Systems 52 3.3 Measurement Scales for Preference Elicitation 57 3.4 Infonnation Delivery . 58 3.5 Recommendation Methods 59 3.5.1 Non-Personalized Recommendation Methods. 61 3.5.2 Personalized Recommendation Methods ... 63 3.5.2.1 Synopsis of Information Filtering Methods . 65 3.5.2.2 Human Approaches towards Information Fil- tering . 67 3.5.2.3 Collaborative Filtering . 68 3.5.2.4 Attribute-Based Filtering 73 3.5.2.5 Rules-Based Filtering . 76 X Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access CONTENTS 4 Research Model, Hypotheses, and Methodology 79 4.1 Problem Statement . 79 4.2 Research Questions and Model . 80 4.3 Methodology and Research Design . 86 5 Results 91 5.1 Descriptive Results .............. 91 5.1.1 Sample Size and Demographic Data . 92 5.1.2 Internet Usage 99 5.1.3 Online Shopping . 102 5.1.4 Online Product Recommendations . 108 5.1.5 Ratings and Comments . 125 5.2 Verification of the Research Model . 134 5.2.1 Exploratory Factor Analysis . 135 5.2.2 Psychographic Hypotheses - Structural Equation Model 138 5.2.3 Psychographic Hypotheses - Regression Model . 141 5.2.4 Sociodemographic Hypotheses . 143 6 Summary and Directions for Further Research 149 6.1 Main Findings . 149 6.2 Limitations and Directions for Further Research . 151 Bibliography 153 Nicolas Knotzer - 978-3-631-75452-8 xi Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access CONTENTS Appendices 164 A AMOS Output 165 A. I Survey AUM . 165 A.2 Survey AON . 181 B Survey Items 197 xii Nicolas Knotzer - 978-3-631-75452-8 Downloaded from PubFactory at 01/11/2019 04:40:47AM via free access List of Figures 2.1 Classification of recommender systems .............. 8 2.2 Overview of application models and e-commerce business goals . 11 2.3 Barnsandnoble.com overall best seller list in the category "books" 13 2.4 Customer comments and ratings on CDs at Amazon.com 14 2.5 Notification service of Educanext.org ..........
Recommended publications
  • Personalized Recommendation System Based Association Rule Mining and Sentiment Classification

    Personalized Recommendation System Based Association Rule Mining and Sentiment Classification

    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-4, April 2020 Personalized Recommendation System based Association Rule Mining and Sentiment Classification Senthil S Sekhar, K. Satyanarayana this issue. Online companies generally collect customer Abstract: In this emerging global economy, e-commerce is an reviews and use them to recommend products to other inevitable part of the business strategy. Moreover, the business companies at a lower cost. Such software systems that make world comprises the upcoming entrepreneurs who are unaware of customized responses are known as recommendation the current trends in marketing. Therefore, a recommendation systems. The recommendation systems are beneficial for system is very essential for them. In this paper, a fully automated both the user and the vendor. They save the time and money recommendation system for the upcoming entrepreneurs to become successful in their business is proposed. The system works of the users by helping them find out the best product and in three stages. In the first stage, the most transacted product is company within no time. However, the effectiveness and identified using association rule mining FP growth algorithm. reliability of such recommendation systems are to be studied This helps in extracting useful information from the previous properly. transacted data by mining the entire set of frequent patterns. The In this paper, a fully automated recommendation system is second stage identifies the most customer preferred company proposed. Here, association rule mining based on the FP based on review analysis. The multilevel clustering process with growth algorithm is used. The review data set thus collected the generalization of data review is implemented to achieve an is analyzed using a review analyzer system.
  • Explaining Recommendations Based on Feature Sentiments in Product

    Explaining Recommendations Based on Feature Sentiments in Product

    IUI 2017 • Recommender Systems March 13–16, 2017, Limassol, Cyprus Explaining Recommendations Based on Feature Sentiments in Product Reviews Li Chen Feng Wang Department of Computer Science, Hong Kong Department of Computer Science, Hong Kong Baptist University Baptist University Hong Kong, China Hong Kong, China [email protected] [email protected] ABSTRACT serves to explain the recommendation process (i.e., the logic The explanation interface has been recognized important in of underlying algorithm) [16, 36, 2], or justify why the recom- recommender systems as it can help users evaluate recommen- mendation might be good for a user [37, 41, 15]. According to dations in a more informed way for deciding which ones are [14, 15, 39], the types and aims of explanation can be different relevant to their interests. In different decision environments, in different recommender systems. For instance, in collabo- the specific aim of explanation can be different. In high- rative filtering (CF) systems, the explanation can be in form investment product domains (e.g., digital cameras, laptops) of a histogram with grouping of neighbors in different rat- for which users usually attempt to avoid financial risk, how to ing categories (high, medium and low) for increasing system support users to construct stable preferences and make better transparency and persuasiveness [16]. Keywords or user-tags decisions is particularly crucial. In this paper, we propose based approaches can help users to make qualified and good a novel explanation interface that emphasizes explaining the decisions in CF or content-based recommender systems [37, tradeoff properties within a set of recommendations in terms of 41].
  • User-Centric Design and Evaluation of Explanation for Recommendation

    User-Centric Design and Evaluation of Explanation for Recommendation

    User-Centric Design and Evaluation of Explanation for Recommendation Dr. Li Chen [email protected] July 30, 2020 Invited talk for the 3rd International Workshop on Explainable Recommendation and Search (EARS 2020), in conjunction with SIGIR’20 1 Recommendation is almost everywhere • What products you could buy … • What movies you could watch… • What music you could listen to… • Who you could date… • What restaurants/hotels you could visit … • What images you could view… • Etc. 2 Explanation for Recommender Systems • What is explanation? • “making clear by giving a detailed description” (Tintarev and Masthoff, 2012) • In recommender system, it has been mainly used to • Increase the system’s transparency • explain the recommendation process (i.e., the logic of underlying algorithm) • Persuade users to try • justify why the recommendation might be good for a user Nava Tintarev and Judith Masthoff. 2012. Evaluating the effectiveness of explanations for recommender systems. User Modeling and User-Adapted Interaction 22, 4–5 (Oct. 2012), 399–439. 3 Different kinds of explanation Courtesy image from Kouki et al. (2019) Pigi Kouki, James Schaffer, Jay Pujara, John O’Donovan, and Lise Getoor. 2019. Personalized Explanations for Hybrid Recommender Systems. In Proceedings of the 24th International Conference on Intelligent User Interfaces (IUI ’19). ACM, New York, NY, USA, 379–390. 4 Collaborative (social) style Courtesy image from Gedikli et al. (2014) IMDb’s popular over all average rating interface that performed worst in the study of Herlocker et al. (2000). Only “persuasiveness” was considered as the explanation purpose Such explanation can cause users to overestimate item quality (Bilgic and Courtesy image from Herlocker et al.
  • Antecedents of Review and Recommendation Systems Acceptance Yen-Yao Wang Iowa State University

    Antecedents of Review and Recommendation Systems Acceptance Yen-Yao Wang Iowa State University

    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Antecedents of Review and Recommendation Systems Acceptance Yen-yao Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Business Commons Recommended Citation Wang, Yen-yao, "Antecedents of Review and Recommendation Systems Acceptance" (2011). Graduate Theses and Dissertations. 11203. https://lib.dr.iastate.edu/etd/11203 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Antecedents of review and recommendation systems acceptance by Yen-Yao Wang A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Information Systems Program of Study Committee: Anthony Townsend, Major Professor Brian Mennecke Russell Laczniak Iowa State University Ames, Iowa 2011 Copyright © Yen-Yao Wang, 2011. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES ................................................................................................ iv LIST OF TABLES ..................................................................................................v
  • Exploring the Nexus of E-Commerce and Energy Efficiency

    Exploring the Nexus of E-Commerce and Energy Efficiency

    Exploring the Nexus of E-Commerce and Energy Efficiency December 2015 Table of Contents Abstract ......................................................................................................................................................................4 Introduction ................................................................................................................................................................4 Themes and Concepts in E-commerce .......................................................................................................................5 Keeping it Simple: Successful E-commerce Platform Techniques ..........................................................................5 Advanced Data Analytics: Putting Big Data to Work for E-commerce ...................................................................6 Proactive vs. Reactive E-commerce Opportunities ................................................................................................6 Closed Looped Marketing .......................................................................................................................................7 White Labeled vs. Vendor Branded Platforms .......................................................................................................7 Super-Efficient Products are Valued Online ...........................................................................................................8 Real World Examples: Platforms ................................................................................................................................8
  • 10 Interacting with Recommenders—Overview and Research Directions

    10 Interacting with Recommenders—Overview and Research Directions

    10 Interacting with Recommenders—Overview and Research Directions MICHAEL JUGOVAC and DIETMAR JANNACH, TU Dortmund Automated recommendations have become a ubiquitous part of today’s online user experience. These systems point us to additional items to purchase in online shops, they make suggestions to us on movies to watch, or recommend us people to connect with on social websites. In many of today’s applications, however, the only way for users to interact with the system is to inspect the recommended items. Often, no mechanisms are im- plemented for users to give the system feedback on the recommendations or to explicitly specify preferences, which can limit the potential overall value of the system for its users. Academic research in recommender systems is largely focused on algorithmic approaches for item selection and ranking. Nonetheless, over the years a variety of proposals were made on how to design more interactive recommenders. This work provides a comprehensive overview on the existing literature on user interaction aspects in recommender systems. We cover existing approaches for preference elicitation and result presen- tation, as well as proposals that consider recommendation as an interactive process. Throughout the work, we furthermore discuss examples of real-world systems and outline possible directions for future works. CCS Concepts: • Information systems → Recommender systems;•Human-centered computing → Human computer interaction (HCI);•General and reference → Surveys and overviews; Additional Key Words and Phrases: User interfaces, interactive recommender systems, literature survey ACM Reference format: Michael Jugovac and Dietmar Jannach. 2017. Interacting with Recommenders—Overview and Research Di- rections. ACM Trans. Interact. Intell. Syst. 7, 3, Article 10 (September 2017), 46 pages.
  • Ebay Listings That Sell for Dummies.Pdf

    Ebay Listings That Sell for Dummies.Pdf

    01_789127 ffirs.qxp 3/27/06 5:59 PM Page i eBay® Listings That Sell FOR DUMmIES‰ 01_789127 ffirs.qxp 3/27/06 5:59 PM Page ii 01_789127 ffirs.qxp 3/27/06 5:59 PM Page iii eBay ® Listings That Sell FOR DUMmIES‰ by Marsha Collier and Patti Louise Ruby 01_789127 ffirs.qxp 3/27/06 5:59 PM Page iv eBay® Listings That Sell For Dummies® Published by Wiley Publishing, Inc. 111 River Street Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana Published by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit- ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions. Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc.
  • Delivering a Great Digital Commerce Experience Optimizing Your Customer Path to Purchase Page 2 Ecommerce Guide Ecommerce Guide Page 3

    Delivering a Great Digital Commerce Experience Optimizing Your Customer Path to Purchase Page 2 Ecommerce Guide Ecommerce Guide Page 3

    C1 Delivering a great digital commerce experience Optimizing your customer path to purchase Page 2 Ecommerce Guide Ecommerce Guide Page 3 Introduction 01 Attract 1.1 Create high-quality landing pages 1.2 Use a structured taxonomy 1.3 Maximize indexation opportunities for SEO 1.4 Personalize on-site content 1.5 Adaptive web design 1.6 On-site integrated campaigns 02 Engage 2.1 Create an amazing customer shopping experience 2.2 Making site search work for your customer 2.3 Providing smart navigation tools 2.4 Enriching product information 2.5 Making merchandising relevant to users 03 Convert 3.1 Removing barriers to purchase in your checkout 3.2 Improving the impact of promotions 3.3 Guided navigation: product configuration 3.4 Remarketing and the art of persuasion 3.5 Driving optimization through data 3.6 Selling through content 04 Care 4.1 Using data to empower customer service teams 4.2 Multichannel customer service 4.3 Localizing the ecommerce experience 4.4 Maximizing the impact of your order confirmation process 4.5 Technology-driven customer self-service Checklist Page 4 Ecommerce Guide There is a big difference between creating a digital commerce site, and running a digital commerce site that converts. Each step along the customer journey presents new risks. Customers can get impatient or frustrated, or they might be unconvinced that you have the product that is best for them. The good news is that there are actions you can take to quickly improve each step of the customer journey. Successful ecommerce is a com- bination of continuous optimization and using tools that make optimi- zation easy.