Network Agile Preference-Based Prefetching for Mobile Devices

Total Page:16

File Type:pdf, Size:1020Kb

Network Agile Preference-Based Prefetching for Mobile Devices Network Agile Preference-Based Prefetching for Mobile Devices JunZe Han1, Xiang-Yang Li1;2, Taeho Jung1, Jumin Zhao3, Zenghua Zhao4 1Department of Computer Science, Illinois Institute of Technology, USA 2 School of Software and TNLIST, Tsinghua University 3College of Information Engineering, Taiyuan University of Technology, China 4Department of Computer Engineering, Tianjin University, China Email: [email protected], [email protected], [email protected], [email protected] experience, in this work we present a seamless transparent solution that automatically prefetches contents and switches Abstract—For mobile devices, communication via cellular networks consumes more energy than via WiFi networks, and the connection between cellular and WiFi networks. To make suffers an expensive limited data plan. On the other hand, as the content prefetching work for mobile devices, a number of the coverage and the density of WiFI networks are smaller than challenges must be addressed. In general, we need to know those of the cellular networks, users cannot purely rely on WiFi when to prefetch, and what contents to prefetch such that the to access the Internet. In this work we present a behavior-aware user’s experience is not deteriorated and the overall energy and preference-based approach to prefetch news webpages for cost and monetary cost is reduced. In this work we propose a the user to visit in the near future, by exploiting the WiFi prefetching approach that is able to predict what webpages the network connections to reduce the energy and monetary cost. user will visit more likely in the near future and prefetch them We first design an efficient preference learning algorithm to keep via WiFi network at an appropriate time, such that when the track of the user’s changing interests, and then by predicting user indeed wants to visit these webpages later on, the user the appearance and durations of the WiFi network connections, our prefetch approach optimizes when to prefetch to maximize can directly access them from the prefetched buffer instead of the user experience while lowing the prefetch cost. Our prefetch accessing them via cellular network. approach also exploits the idle period of WiFi connections to reduce the tail-energy consumption. We implement our approach A large number of previous works on web prefetching [6], in iPhone and our extensive evaluations show that our system [7], [8], [9] are based on the URLs of webpages visited in the achieves about 60% hit ratio, saves about 50% cellular data usage, past. However, for news prefetch, simple URL-based approach and reduces the energy cost by 7%. does not work because newly posted news is usually assigned a new unpredictable URL. Thus it is hard to predict what I. INTRODUCTION kind of news a user will be interested in purely based on the URLs of the news. In this work, we present a prefetching According to a recent study [1], mobile web browsing is approach that combines the keyword-based and URL-based growing significantly and is expected to surpass the desktop approaches. Based on the websites and sections visited in the web browsing by 2015. Web browsing and news reading past, e.g., cnn.com, cnn.com/World, and the keywords in the account for a large proportion of the time and the data used news, we design an efficient preference learning algorithm to by smartphones: smartphone users with a data plan spend on keep track of the user’s changing interests for news so that we average 300 minutes per month browsing the web, which is can prefetch appropriate contents using WiFi. comparable to mobile voice usage [2]. A global smartphone study [2] shows that web browser is the single most popular On the other hand, many web prefetch techniques focus data application which accounts for 54% of data application on short-term prefetching [7], [10], [11], which prefetches face time and 50% of data volume for smartphones; and the webpages to be visited within a few seconds to a few reading news makes up for 68% of the user’s web browsing minutes at most. However, in this paper we focus on the time, which is one of the most frequent activities [3]. long-term prefetching instead which prefetches the webpages much earlier, e.g., half an hour to several hours, before the Typically there are two networking access approaches: user visits the webpages. A motivating example for the long- through cellular network and through WiFi network. Although term prefetching is as follows. Assume that a user Bob goes the cellular network is almost ubiquitous and its coverage to work at 8:00 am in the morning by train and he is used seems not to be a problem, the limited data plan, higher price to read news on his way to the office. Assume there is no and more energy consumption [4], [5] make the smartphone WiFi connection on the train and Bob has a WiFi connection users prefer using the WiFi network. It is thus natural to switch at home. By profiling the news types and frequently visited to WiFi network connection whenever possible. In order to webpages by Bob on the train, we can prefetch these contents reduce energy and monetary cost while not sacrificing the user for Bob when he is about to leave home for work. Although The research of Li is partially supported by NSF CNS-1035894, NSF the contents prefetched might be obsolete or invalided in the ECCS-1247944, NSF ECCS-1343306, NSF CMMI 1436786, National Natural future, we assume that the user’s experience will not drop by Science Foundation of China under Grant No. 61170216, No. 61228202. reading the news prefetched about an hour ago. For the long-term mobile prefetching described above, clients’ access latency. Thus without global webpage access another difficulty for prefetching is to decide when to prefetch information, we cannot adapt the long-term prefetching into the contents. Several challenges make the decision of prefetch personal prefetching for our problem. timing difficult: (1) if a user has a WiFi network connection now, we need to predict when the user will move outside the B. Mobile Prefetch coverage region of the WiFi network; (2) even if we know when the WiFi network connection will be lost, we need to Compared to desktop prefetching techniques, the prefetch- estimate the time needed for prefetching the contents so that ing techniques for mobile device need to be energy and data the prefetched contents are mostly up-to-date when the user efficient. Several prefetching schemes [18], [19], [20] have reads it; (3) the prefetching activities should not interfere the been proposed which make prefetch decision by considering user’s regular network usage activities (otherwise, the user the power consumption, data access rate, data update rate, and experience will be deteriorated). data size. Specially, Higgins et al. [20] presented a cost-benefit analysis to decide when to prefetch based on the performance In summary, the main contributions of this work are as such as latency reduction, the cost of energy and monetary cost follows. We design an efficient keyword-based and URL-based or data usage. Some prefetching schemes [9], [21], [22] also preference learning algorithm to predict the news webpage that take advantage of the users’ spatiotemporal access patterns for the user will be interested in. We also present a network con- web contents. Lymberopoulos et al. [9] presented a prefetching nection prediction approach that can start contents prefetching scheme that predicts what webpages a user is likely to request automatically. In addition, we propose a prefetch scheduling as well as when these requests are likely to occur. Parate algorithm to exploit idle time of the connection to prefetch the et al. [21] proposed an approach to predict which app will webpages. We implemented the prototype system on iPhone be used next and when it will be used, and then prefetch and conducted extensive evaluations on the performance of application content to fast app launch. Kamaraju et al. [22] our system. The experimental results show that our system presented a context-aware delivery paradigm that prefetches achieves about 60% hit ratio, saves about 50% cellular data video contents by exploiting locations and times in which the usage, and reduces the energy cost by 7%. networks experience excess of resources. However none of the prior prefetching schemes are designed for news webpage II. RELATED WORK prefetching and make prefetch decisions based on the network A. Desktop Prefetch condition prediction. In particularly, as news webpages are frequently updated and require high freshness, it is desirable Web prefetching has been studied for a long time. The pri- that we can delay the prefetching as late as possible, which mary objective of prefetching technique in desktop computer requires that we can predict the future network condition. Thus is to reduce the latency of webpage loading and increase the priors prefetching cannot be directly adapted to news webpage hit ratio of the prefetched webpages. prefetching. 1) Short-Term Prefetching: Short-term prefetching tech- nique aims at predicting the webpages to be visited imme- III. PROBLEM FORMULATION AND CHALLENGES diately say the next one or two webpages. The Markov model A. Problem Formulation has been exploited in the short-term prefetching to predict next webpages to be visited by analyzing the past visit sequence [6], Given the user’s visited webpages and the past network [8], [12]. In HTML5 [13] and Firefox browser [11], a strategy conditions, we want to prefetch news webpages via WiFi “link prefetching” for website optimization is introduced: network that the user is likely to visit when the WiFi network the browser can prefetch specified webpages based on the is not available.
Recommended publications
  • Re-Architecting Web and Mobile Information Access for Emerging Regions
    Re-architecting Web and Mobile Information Access for Emerging Regions by Jay Chen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics Courant Institute of Mathematical Sciences New York University September 2011 Professor Lakshminarayanan Subramanian c Jay Chen All Rights Reserved, 2011 Acknowledgments I would like to start by expressing my deepest gratitude to my advisor, Lakshminarayanan Sub- ramanian (or just “Lakshmi”). It was Lakshmi who set me on the path toward my eventual area of research. Lakshmi has always been generous with his time, and never short on ideas or en- thusiasm. Without Lakshmi’s courage to pursue the research that inspires him, I would not have found my own passion: to build systems that benefit people - as many people as much as possible by inventing ways to bring technology to people living outside of the privileged regions of the world. Contributors to this dissertation - This thesis is based on research that I performed over the past five years with many colleagues contributing directly to the work in this dissertation. Many people helped me along the way whose help I could not have done without. The RuralCafe user study would not have been possible without the help of Saleema Amershi and Aditya Dhananjay (Chapter 6.6). Our low bandwidth transport modeling and analysis (Chapter 3.1) was an effort largely attributable to Janardhan Iyengar and long discussions with Bryan Ford. Russell Power implemented the feature reduction algorithm for CIPs (Chapter 7.2.2) in his “spare time”. Our ELF deployments (Chapters 2.2 and 5.3) were only possible with help from David Hutchful.
    [Show full text]
  • Swarovsky: Optimizing Resource Loading for Mobile Web Browsing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 1 SWAROVsky: Optimizing Resource Loading for Mobile Web Browsing Xuanzhe Liu, Member, IEEE, Yun Ma, Xinyang Wang, Yunxin Liu Senior Member, IEEE, Tao Xie Senior Member, IEEE, and Gang Huang Senior Member, IEEE Abstract—Imperfect Web resource loading prevents mobile Web browsing from providing satisfactory user experience. In this article, we design and implement the SWAROVsky system to address three main issues of current inefficient Web resource loading: (1) on-demand and thus slow loading of sub-resources of webpages; (2) duplicated loading of resources with different URLs but the same content; and (3) redundant loading of the same resource due to improper cache configurations. SWAROVsky employs a dual-proxy architecture that comprises a remote cloud-side proxy and a local proxy on mobile devices. The remote proxy proactively loads webpages from their original Web servers and maintains a resource loading graph for every single webpage. Based on the graph, the remote proxy is capable of deciding which resources are “really” needed for the webpage and their loading orders, and thus can synchronize these needed resources with the local proxy of a client efficiently and timely. The local proxy also runs an intelligent and light-weight algorithm to identify resources with different URLs but the same content, and thus can avoid duplicated downloading of the same content via network. Our system can be used with existing Web browsers and Web servers, and does not break the normal semantics of a webpage. Evaluations with 50 websites show that on average our system can reduce the page load time by 43.1% and the network data transmission by 57.6%, while imposing marginal system overhead.
    [Show full text]
  • Master Thesis
    ABSTRACT Speeding Up Mobile Browsers without Infrastructure Support by Zhen Wang Mobile browsers are known to be slow. We characterize the performance of mobile browsers and find out that resource loading is the bottleneck. Leveraging an unprecedent- ed set of web usage data collected from 24 iPhone users continuously over one year, we examine the three fundamental, orthogonal approaches to improve resource loading with- out infrastructure support: caching, prefetching, and speculative loading, which is first proposed and studied in this work. Speculative loading predicts and speculatively loads the subresources needed to open a webpage once its URL is given. We show that while caching and prefetching are highly limited for mobile browsing, speculative loading can be significantly more effective. Empirically, we show that client-only solutions can im- prove the browser speed by 1.4 seconds on average. We also report the design, realiza- tion, and evaluation of speculative loading in a WebKit-based browser called Tempo. On average, Tempo can reduce browser delay by 1 second (~20%). Acknowledgements I would like to thank my advisor, Professor Lin Zhong, for his guidance and encour- agement during my study and research at Rice University. He has not only given me in- sightful suggestions, but also helped me to develop the right way to do research. I am also grateful to work with Mansoor Chishtie from Texas Instruments, who sup- ports my research and gives me inspiring advice. I would like to thank Professor Dan Wallach and Professor T. S. Eugene Ng for serv- ing as my thesis committee. Their comments and feedback to this work are of great value.
    [Show full text]
  • Critical CSS Rules Decreasing Time to first Render by Inlining CSS Rules for Over-The-Fold Elements
    Critical CSS Rules Decreasing time to first render by inlining CSS rules for over-the-fold elements Gorjan Jovanovski [email protected] July, 2016, 41 pages Supervisor: Dr. Vadim Zaytsev Host organisation: The Next Web, http://thenextweb.com Universiteit van Amsterdam Faculteit der Natuurwetenschappen, Wiskunde en Informatica Master Software Engineering http://www.software-engineering-amsterdam.nl Contents Abstract 3 1 Introduction 4 1.1 Problem statement...................................... 4 1.2 Research questions...................................... 5 1.3 Use cases ........................................... 5 1.3.1 Caching........................................ 6 1.3.2 Content Delivery Networks ............................. 6 1.3.3 Resolution mismatch................................. 6 1.4 Solution outline........................................ 6 2 Background 8 2.1 Cascading Style Sheets.................................... 8 2.1.1 Media queries..................................... 8 2.2 Web page rendering ..................................... 9 2.2.1 Time to first render ................................. 9 2.3 Critical path CSS....................................... 10 3 Related work 12 3.1 Academical Research..................................... 12 3.2 CSS prefetch and preload .................................. 12 3.2.1 Prefetch........................................ 12 3.2.2 Preload ........................................ 12 3.3 Content first ......................................... 13 3.4 Manual extraction .....................................
    [Show full text]
  • Responsive Design Cover
    Responsive Design cover .com Responsive Design Essentials [email protected] Table of Contents Responsive Design cover 1 Responsive Web & Mobile 1 Goal of Responsive Design Most Popular Mobile & Tablet Resolutions 2015 2 The Universal Page Responsive Design Starts with HTML & CSS Technologies Necessary for Responsive Design Responsive Considerations & Guidelines 4 Do Don’t Your Responsive Canvas | The Browser Window Setting Up Constraints A Dao of Web Design 6 Fixed 960 Pixel Grid System (before Responsive) 7 12-Column Grid 16-Column Grid 12-Column Layout 7 Content Could Span Several Columns 16-Column Layout 7 Content Could Span Several Columns Planning Responsive | Wireframes 8 Responsive Sketch Sheets Electronic Wireframe & Planning Tools HTML5 9 The Need for New HTML Elements WHATWG | New Standards Body 10 Workshop on Web Applications and Compound Documents HTML5 a Living Standard See What CSS3 & HTML5 Can Do 11 Cascading Style Sheets (CSS) 14 CSS Box Model Three Methods for Applying CSS 15 Inline Embedded External CSS Vocabulary 17 Responsive Web Design ©2016 — Kelly McCathran i Table of Contents Types of CSS Selectors 18 Element ID Class 3-Digit Hexadecimal Values 19 CSS3 20 Rounded CSS Corners Rounded Corners for Multiple Browsers 21 CSS Border-radius Prefix Rounded Corners for IE9 Media Query Intro 22 Flexible or Fluid Grid = The Formula 23 Flexible Margins or Flexible Padding CSS Box Model Review Reset CSS 24 The Viewport 25 Layout Viewport 26 Mobile Viewport or Visual Viewport 26 Viewport Control 27 Viewport Meta Tag Recommended
    [Show full text]
  • Analysis and Design of Prefetching Framework for Mozilla Firefox
    I.J. Information Engineering and Electronic Business, 2015, 5, 7-12 Published Online September 2015 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijieeb.2015.05.02 Analysis and Design of Prefetching Framework for Mozilla Firefox Neha Sharma Northern India Engineering College, Delhi, India E-mail: [email protected] Sanjay Kumar Dubey Amity University, Noida, U.P. 201303, India E-mail: [email protected] Abstract—The presence of number of web sites has web pages client is using. Now, the question is how to increased the user’s attraction towards web objects. This select the pages. For this, different prefetching techniques tremendous use came up with the future requests are used. These prefetching techniques are browser prediction depending upon the current and past access dependent. The browser with better prefetching scheme, behaviour. Use of Internet has boomed up a lot since the is more efficient. last decade. This use also came with the heavy load on Web requests or better say, web surfing patterns of the the internet. In today’s world, speed plays a significant user are almost same for the specific intervals. Even there role and hence the speed augmentation is one of the is some similarity between set of users [2]. They might biggest issues. For this, web latency reduction by access the same pattern simultaneously. prefetching is one of the good ideas. For the same, web Prefetching is the technique, where user’s next prefetching is performed, where user’s next expected expected requests are loaded previously in the web cache, requests are prefetched in the web cache of the web by applying some predictive methods.
    [Show full text]
  • A Latency-Determining/User Directed Firefox Browser Extension Philip Avery Mein
    A Latency-Determining/User Directed Firefox Browser Extension Philip Avery Mein Submitted to the graduate degree program Electrical Engineering & Computer Science and The Graduate Faculty of the University of Kansas School of Engineering in partial fulfillment of the requirements for the degree of Master of Science Thesis Committee: Dr. James P.G. Sterbenz: Chairperson Dr. Bo Luo Dr. Gary J. Minden Date Defended c 2012Philip Avery Mein The Thesis Committee for Philip Avery Mein certifies that this is the approved version of the following thesis: A Latency-Determining/User Directed Firefox Browser Extension Committee: Chairperson Date Approved i Abstract As the World Wide Web continues to evolve as the preferred choice for infor- mation access it is critical that its utility to the user remains. Latency as a result of network congestion, bandwidth availability, server processing delays, embed- ded objects, and transmission delays and errors can impact the utility of the web browser application. To improve the overall user experience the application needs to not only provide feedback to the end user about the latency of links that are available but to also provide them controls in the retrieval of the web content. This thesis presents a background and related work relating to latency and web optimization techniques to reduce this latency and then introduce an improvement to the \latency aware" Mozilla Firefox extension which was originally developed by Sterbenz et. al., in 2002. This these describes the architecture and prototype implementation, followed with an analysis of its effectiveness to predict latency and future work. Key Terms- high speed, mobile, wireless, weakly-connected, information ac- cess, web browsing, caching, firefox-addon, latency ii For my family, whose love and support throughout the course of this thesis meant sacrifice on their part.
    [Show full text]
  • Measuring and Mitigating Web Performance Bottlenecks in Broadband Access Networks
    Measuring and Mitigating Web Performance Bottlenecks in Broadband Access Networks Srikanth Sundaresan Nick Feamster Georgia Tech Georgia Tech [email protected] [email protected] Renata Teixeira Nazanin Magharei CNRS & UPMC Cisco Systems [email protected] [email protected] ABSTRACT As downstream throughput continues to increase, one might expect We measure Web performance bottlenecks in home broadband ac- the Web to get faster at home, as well. Meanwhile, Internet ser- cess networks and evaluate ways to mitigate these bottlenecks with vice providers and application providers are increasingly cognizant caching within home networks. We first measure Web performance of the importance of reducing Web page load times; even seem- bottlenecks to nine popular Web sites from more than 5,000 broad- ingly small differences in latency can introduce significant effects band access networks and demonstrate that when the downstream on usability (and revenue). The Bing search engine experiences re- throughput of the access link exceeds about 16 Mbits/s, latency is duced revenue of 1.2% with just a 500-millisecond delay [53], and the main bottleneck for Web page load time. Next, we use a router- a 400-millisecond delay resulted in a 0.74% decrease in searches based Web measurement tool, Mirage, to deconstruct Web page on the Google search engine [14]. Forrester research found that load time into its constituent components (DNS lookup, TCP con- most users expected online shopping sites to load in two seconds nection setup, object download) and show that simple latency opti- or fewer [40]. Content providers struggle to mitigate any network mizations can yield significant improvements in overall page load performance bottleneck that can slow down Web page loads in ac- times.
    [Show full text]
  • Web Tracking SNET2 Seminar Paper - Summer Term 2011
    Web Tracking SNET2 Seminar Paper - Summer Term 2011 Niklas Schmucker¨ Berlin University of Technology Email: [email protected] Abstract—This paper gives an introduction to web tracking II. WEB ANALYTICS and provides an overview over relevant technologies currently The web analytics field is concerned with the measurement found in use on the Internet. We examine motivations for web tracking and discuss issues related to privacy and security. and interpretation of web site usage data. A variety of infor- Furthermore, we present and compare countermeasures intended mation is potentially of interest to web site operators, such to protect end users. We end with a discussion of possible future as: trends and developments in the field of user tracking. The number of visitors over time, which can further be • divided into returning and new visitors. This includes how I. INTRODUCTION long individuals stay on the site and which pages they Web tracking technologies are used to collect, store and look at (also see Section V-A). connect user web browsing behavior records. The information How visitors find out about the web site. Usually three • gained thereby is of interest to various parties. Major motiva- sources of traffic are differentiated: Direct traffic (the user tions for web tracking are: enters the address into the address bar), traffic referred Advertisement companies actively collect information from other web sites (see Section V-C2), as well as search • about users and accumulate it in user profiles. These pro- engine traffic. For the latter, even the relevant search files are then used to tailor individualized advertisements. keywords can be extracted.
    [Show full text]
  • How Far Can Client-Only Solutions Go for Mobile Browser Speed? 1Zhen Wang, 2Felix Xiaozhu Lin, 1,2Lin Zhong, and 3Mansoor Chishtie 1Dept
    How Far Can Client-Only Solutions Go for Mobile Browser Speed? 1Zhen Wang, 2Felix Xiaozhu Lin, 1,2Lin Zhong, and 3Mansoor Chishtie 1Dept. of ECE and 2Dept. of CS, Rice University, Houston, TX, and 3Texas Instruments, Dallas, TX 1,2{zhen.wang, xzl, lzhong}@rice.edu and [email protected] ABSTRACT the failure of Amazon Web Services’ cloud-computing infrastruc- Mobile browser is known to be slow because of the bottleneck in ture [17] took many websites down. Finally, solutions based on resource loading. Client-only solutions to improve resource load- proxy support violate end-to-end security, which is crucial to se- ing are attractive because they are immediately deployable, scala- cure websites. ble, and secure. We present the first publicly known treatment of Not surprisingly, solutions that do not rely on infrastructure sup- client-only solutions to understand how much they can improve port, or client-only solutions, are particularly attractive because mobile browser speed without infrastructure support. Leveraging they are immediately deployable, scalable, and secure. While an unprecedented set of web usage data collected from 24 iPhone client-only solutions are likely to be less effective than those leve- users continuously over one year, we examine the three funda- raging infrastructure supports, it has been an open question how mental, orthogonal approaches a client-only solution can take: effective client-only solutions can be for mobile browsers. The caching, prefetching, and speculative loading. Speculative load- challenge to answering this question has been the lack of data ing, as is firstly proposed and studied in this work, predicts and regarding the browsing behavior of mobile users.
    [Show full text]
  • Master Thesis
    RICE UNIVERSITY Speeding Up Mobile Browsers without Infrastructure Support by Zhen Wang A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Science APPROVED, THESIS COMMITTEE Lin Zhong, Chair Associate Professor Electrical and Computer Engineering Dan Wallach Associate Professor Computer Science T. S. Eugene Ng Associate Professor Computer Science HOUSTON, TEXAS APRIL 2012 ABSTRACT Speeding Up Mobile Browsers without Infrastructure Support by Zhen Wang Mobile browsers are known to be slow. We characterize the performance of mobile browsers and find out that resource loading is the bottleneck. Leveraging an unprecedent- ed set of web usage data collected from 24 iPhone users continuously over one year, we examine the three fundamental, orthogonal approaches to improve resource loading with- out infrastructure support: caching, prefetching, and speculative loading, which is first proposed and studied in this work. Speculative loading predicts and speculatively loads the subresources needed to open a webpage once its URL is given. We show that while caching and prefetching are highly limited for mobile browsing, speculative loading can be significantly more effective. Empirically, we show that client-only solutions can im- prove the browser speed by 1.4 seconds on average. We also report the design, realiza- tion, and evaluation of speculative loading in a WebKit-based browser called Tempo. On average, Tempo can reduce browser delay by 1 second (~20%). Acknowledgements I would like to thank my advisor, Professor Lin Zhong, for his guidance and encour- agement during my study and research at Rice University. He has not only given me in- sightful suggestions, but also helped me to develop the right way to do research.
    [Show full text]
  • DNS Weighted Footprints for Web Browsing Analytics
    DNS weighted footprints for web browsing analytics Jos´eLuis Garc´ıa-Dorado,Javier Ramos, Miguel Rodr´ıguez,and Javier Aracil High Performance Computing and Networking Research Group, Universidad Aut´onomade Madrid, Spain. NOTE: This is a version of an unedited manuscript that was accepted for publica- tion. Please, cite as: J.L. Garc´ıa-Dorado,J. Ramos, M. Rodr´ıguez,J. Aracil. DNS weighted footprints for web browsing analytics. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 111, 35-48, (2018). The final publication is available at: https://doi.org/10.1016/j.jnca.2018.03. 008 Abstract prints), we have measured that our proposal is able to identify visits and their durations with false and true positives rates between 2-9% and over 90%, The monetization of the large amount of data that respectively, at throughputs between 800,000 and ISPs have of their users is still in early stages. 1.4 million DNS packets per second in diverse sce- Specifically, the knowledge of the websites that spe- narios, thus proving both its refinement and ap- cific users or aggregates of users visit opens new plicability. Index Terms: Browsing analytics; opportunities of business, after the convenient san- Data monetization; DNS footprint; web-user pro- itization. However, the construction of accurate files; DNSPRINTS. DNS-based web-user profiles on large networks is a challenge not only because the requirements that capturing traffic entails, but also given the use of 1 Introduction DNS caches, the proliferation of botnets and the complexity of current websites (i.e., when a user The commercial exploitation of web browsing ana- visit a website a set of self-triggered DNS queries lytics is currently a fact, whereby the collaboration for banners, from both same company and third between both marketing and Internet communi- parties services, as well for some preloaded and ties has progressively strengthened after each busi- prefetching contents are in place).
    [Show full text]