General Index
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metamorphism of Sedimentary Manganese Deposits
Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Abstract Volume & Fieldtrip Guidebook
SGA Student Conference Mineral resources for the society Prague, April 15‐19, 2011 Society for Geology Applied to Mineral Deposits & Charles University in Prague, Czech Republic SGA Student Conference Mineral resources for the society Prague, April 15‐19, 2011 ABSTRACT VOLUME & FIELD TRIP GUIDEBOOK Editor Kateřina Schlöglová 1 SGA Student Conference Mineral resources for the society Prague, April 15‐19, 2011 Contents Program of the conference 4 Abstract Volume Hydrotermal Alteration and Mass Change Calculations at the Mastra Au‐Ag Deposit, 8 Gümüşhane, Turkey Neslihan ASLAN & Miğraç AKÇAY Qualitative and quantitative analysis of talc from Western Carpathians 9 Vladimír ČAVAJDA, Peter UHLÍK & Ľubica PUŠKELOVÁ The Kombat Deposit in Namibia: A possible IOCG deposit 10 Nikola DENISOVÁ Geology and mineralization of the polymetallic Salt River deposit near Pofadder, 11 Namaqualand metamorphic province, South Africa Thomas DITTRICH, Bernhard SCHULZ, Jens GUTZMER, Keith OSBURN & Craig R. McCLUNG Application and significance of Vickers Microhardness Measurments for coal 12 Anne ENGLER Reactive fluid flow and origin of the fracture‐controlled greisens in the Krušné hory Mts., 13 Czech Republic Matylda HEŘMANSKÁ & David DOLEJŠ Low‐temperature alteration of metamict Y, REE, Nb, Ta, Ti oxide minerals 14 Nikola HEROLDOVÁ & Radek ŠKODA Grade and tonnage model for orogenic gold deposits in Finland and comparison with 15 Swedish, Zimbabwean, and Australian Southern Cross deposits Janne HOKKA Alteration styles and geochemical zonation at the Raitevarri -
Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China
minerals Article Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China Shengjiang Du 1,2, Hanjie Wen 3,4,*, Shirong Liu 3, Chaojian Qin 3, Yongfeng Yan 5, Guangshu Yang 5 and Pengyu Feng 5 1 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; [email protected] 2 Chinese Academy of Geological Science, Beijing 100037, China 3 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; [email protected] (S.L.); [email protected] (C.Q.) 4 University of Chinese Academy of Sciences, Beijing 100049, China 5 Kunming University of Science and Technology, Kunming 650093, China; [email protected] (Y.Y.); [email protected] (G.Y.); [email protected] (P.F.) * Correspondence: [email protected] Received: 26 June 2020; Accepted: 17 July 2020; Published: 23 July 2020 Abstract: The Sanbao Mn–Ag (Zn-Pb) deposit located in the Laojunshan ore district is one of the most important deposits that has produced most Ag and Mn metals in southeastern Yunnan Province, China. Few studies are available concerning the distribution and mineralization of Ag, restricting further resource exploration. In this study, detailed mineralogy, chronology, and geochemistry are examined with the aim of revealing Ag occurrence and its associated primary base-metal and supergene mineralization. Results show that manganite and romanèchite are the major Ag-bearing minerals. Cassiterite from the Mn–Ag ores yielded a U–Pb age of 436 17 Ma, consistent with ± the Caledonian age of the Nanwenhe granitic pluton. -
Manganese Deposits of Western Utah
Manganese Deposits of Western Utah GEOLOGICAL SURVEY BULLETIN 979-A Manganese Deposits of Western Utah By MAX D. CRITTENDEN, JR. , MANGANESE DEPOSITS OF UTAH, PART 1 GEOLOGICAL SURVEY BULLETIN 979-A A report on known deposits west of the lllth meridian * UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 19S1 UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 50 cents (paper cover) CONTENTS Fag* Abstract.__________________________________________________________ 1 Introduction._._____.__________----_______-______-_--_------.__-__ 1 History of mining and production__.._______.______.___.__-___-_____ 2 Occurrence and age of the deposits_________-_____-_.-__-__-_-__--_- 6 Mineralogy _--____._____---_--_---_------------------------------- 7 Descriptions of the manganese minerals....____.__--_____-__-..__ 8 Oxides...___-__.--_--------___-_-_.-- . _ 8 Carbonates.___-____.__-____________-_-___-----_--------__ 9 Silicate.,_ _____-----_____--__-_______-_---___-__--___._--. 9 Relative stability and manganese content______--_----------_----_ 10 Oxidation and enrichment._____________________________________ 10 Classification and origin of the deposits....______.__._____---.___.-_-_ 11 General discussion_____________________________________________ 11 Syngenetic deposits_-_--____-----_--------------_-------__-_-.- 13 Bedded depositS-__________-_____._____..__________________ 13 Spring -
2713^7 Contents
MINERALS OF WASHINGTON, D.C. AND VICINITY by Lawrence R. Bernstein U. S. Geo^r^'ce.l Survey OPEN F-'::. r;.".r'0.?;r cer.-..: 2713^7 CONTENTS Introduction 1 Scope of report 4 Mineral collecting 5 Acknowledgments 6 Introduction 6a ITT3 Aclj.il1 -> ! T^______.___~^. -"» _«_____«..«_»«__.. " " .._.«__._.._*_.__._.,_.._.-. _>-.-- -_>-->.-..-. Q Triassic deposits 31 Mineral localities 38 District of Columbia : 38 IMavtrlWlCfci JT XClilUl a Tirl ~ __ ___« - - -_ -»-i-___ .__- _ __- - ________________ m~m~m~ m~ m~ «M » M* **A^J ^ Anne Arundel County 43 Baltimore County 45 Howard County - 74 Montgomery County 88 Prince Georges County 120 Virginia . 129 Arlington County 129 Fairfax County 131 Fauquier County 139 Loudoun County 143 Prince William County 149 Diabase quarries of northern Virginia 155 CAPTIONS Illustrations Plate 1. Mineral localities of Washington, B.C., and vicinity. Plate 2. Generalized geologic map of Washington. D.C. and vicinity, Plate 3. Mineral deposits and generalized geology of the Triassic rocks near Washington, D.C. List of Figures Figure 1. Index map showing region covered in this report. Stfaded area is covered in most detail. Figure 2. Block diagram of the Washington, D.C. region showing physiographic provinces and major geographic and geologic features. ITfgure -3. Coastal Plain deposits of Washington, D.C. and vicinity. Figure 4. Generalized cross section of a typical complex pegmatite of the Washington, D.C. area. Figure 5. Rhythmically.layered gabbro of the Baltimore Gabbro Com plex at Ilchester, Maryland. Figure 6. Triassic diabase dike forming a ridge north of Route 7 near Dranesville, Virginia. -
Thirty-Fourth List of New Mineral Names
MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given. -
Download the Scanned
American Mineralogist, Volume 77, pages 670475, 1992 NEW MINERAL NAMES* JonN L. J,Annson CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl' Canada Abswurmbachite* rutile, hollandite, and manganoan cuprian clinochlore. The new name is for Irmgard Abs-Wurmbach, in recog- T. Reinecke,E. Tillmanns, H.-J. Bernhardt (1991)Abs- her contribution to the crystal chemistry, sta- wurmbachite, Cu'?*Mnl*[O8/SiOo],a new mineral of nition of physical properties ofbraunite. Type the braunite group: Natural occurrence,synthesis, and bility relations, and crystal structure.Neues Jahrb. Mineral. Abh., 163,ll7- material is in the Smithsonian Institution, Washington, r43. DC, and in the Institut fiir Mineralogie, Ruhr-Universitlit Bochum, Germany. J.L.J. The new mineral and cuprian braunit€ occur in brown- ish red piemontite-sursassitequartzites at Mount Ochi, near Karystos, Evvia, Greece, and in similar quartzites on the Vasilikon mountains near Apikia, Andros Island, Barstowite* Greece.An electron microprobe analysis (Andros mate- C.J. Stanley,G.C. Jones,A.D. Hart (1991) Barstowite, gave SiO, 9.8, TiO, rial; one of six for both localities) 3PbClr'PbCOr'HrO, a new mineral from BoundsClifl 0.61,Al,O3 0.60, Fe'O, 3.0,MnrO. 71.3,MgO 0.04,CuO St. Endellion,Cornwall. Mineral. Mag., 55, l2l-125. 12.5, sum 97.85 wto/o,corresponding to (CuStrMn3tu- Electron microprobe and CHN analysis gavePb75.47, Mgoo,)", oo(Mn3jrFe|jrAlo orTif.[nCuStr)", nrSi' o, for eight (calc.)6.03, sum 101.46wto/o, cations,ideally CuMnuSiO'r, the Cu analogueof braunite. Cl 18.67,C l.Iz,H 0.18,O to Pb.orClrrrCr.or- The range of Cu2* substitution for Mn2' is 0-42 molo/oin which for 17 atoms corresponds The min- cuprian braunite and 52-93 molo/oin abswurmbachite. -
3.3 Wombeyan Caves
CHAPTER 3. CASE STUDIES 132 3.3 Wombeyan Caves Introduction Wombeyan Caves are located about 130 km to the south-west of Sydney (Figures 1.3 and 3.76). They are accessible by road from Mittagong or Goulburn and Taralga in the Southern Highlands (CMA Map 1976). Wombeyan Caves have been known to settlers since 1828 and developed for tourism since at least 1879 (Dyson et al. 1982). Wombeyan Caves Reserve is managed by the Jenolan Caves Reserve Trust (the same body which manages Jenolan Caves) and is a popular area for camping, walking and tourism. The surrounding area is agricultural but much of it is steep and left in a natural state. For most of the karst area, the vegetation is eucalypt woodland and grassland. Vegetation along creeks is dominated by Casuarina sp. Within the Caves Reserve are a number of marble quarries (ML2, ML3, ML4). The creamy white marble was quarried by Melocco Bros. for building stone. A quarry run by Steetly Industries crushes marble for industrial products. Geological Setting Regional Geology Wombeyan Caves is about 19 km west of the western edge of the Sydney Basin. About 5 km to the west of Wombeyan Caves is a narrow belt of folded Ordovician sediments of the Triangle Group, trending N-S (Figure 3.75). These sediments are unconformably overlain further to the west by sandstones of the Upper Devonian Lambie Group which have developed in a syncline, forming a wide N-S trending belt (Cookbundoon Synclinorium). Silurian sediments, including a small amount of limestone, crop out about 20 km to the SE of Wombeyan Caves, SSW of Bullio. -
Manganoquadratite, Agmnass3, a New Manganese Bearing
American Mineralogist, Volume 97, pages 1199–1205, 2012 Manganoquadratite, AgMnAsS3, a new manganese-bearing sulfosalt from the Uchucchacua polymetallic deposit, Lima Department, Peru: Description and crystal structure PAOLA BONAZZI,1,* FRANK N. KEUTSCH,2 AND LUCA BINDI1,3 1Dipartimento di Scienze della Terra, Università degli Studi di Firenze, via La Pira 4, I-50121 Firenze, Italy 2Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A. 3Museo di Storia Naturale, sezione di Mineralogia e Litologia, Università degli Studi di Firenze, via La Pira 4, I-50121 Firenze, Italy ABSTRACT Manganoquadratite, ideally AgMnAsS3, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as dark gray, anhedral to subhe- dral grains up 0.5 mm across, closely associated with alabandite, Mn-rich calcite, Mn-rich sphalerite, proustite, pyrite, pyrrhotite, tennantite, argentotennantite, stannite, and other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S. Manganoquadratite is opaque with a metallic luster and possesses 2 a reddish-brown streak. It is brittle, the Vickers microhardness (VHN10) is 81 kg/mm (range 75–96) (corresponding Mohs hardness of 2–2½). The calculated density is 4.680 g/cm3 (on the basis of the empirical formula). In plane-polarized reflected light, manganoquadratite is moderately bireflectant and very weakly pleochroic from dark gray to a blue gray. Internal reflections are absent. Between crossed polars, the mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 29.5, 31.8 (471.1 nm), 28.1, 30.5 (548.3 nm), 27.3, 29.3 (586.6 nm), and 26.0, 28.2 (652.3 nm), respectively. -
Franklin, Fluorescent Mineral Capital of the World
FRANKLIN, FLUORESCENT MINERAL CAPITAL OF THE WORLD © Spex Industries, Inc. 1981 by R.W. )ones, Jr. 3520 N. Rose Circle Dr., Scottsdale, AZ 85251 Tell people that Franklin, New Jersey is lots. In the hustle and bustle of their daily The deposit has yielded close to 300 noted throughout the world for its myriad lives, people tend to forget New Jersey's different minerals, a number vastly fluorescent minerals and your reward is natural endowments: the rich farmlands greater than from any other known source likely to be a blank stare. Tell them that of the south, t he rolling forest and grazing in the world. More amazing, nearly 60 of Franklin, along with neighboring Ogdens lands of the northwest, the manicured these minerals exhibit luminescence, in burg, is the home of a truly unique metal lawns and rich green golf courses of its the form of almost instantaneous fluores deposit and boredom sets in for sure. But suburbs, and the unique zinc-manganese- cence or as days long persistent take them for a walk on a dark night iron deposits of Franklin and Sterling Hill phosphorescence. across the waste rock dumps atop this ore Maybe for two or three weeks of t he deposit and they begin to act strangely. su mmer people forego the turmoil and The luminescence of many Frankl in Like children in a candy shop, they're cavort on ocean beaches or bask in the species explains the strange behavior intrigued, captivated by the multi-hued glory of a sun-dappled lake. But to accept noted among miners and mineral colors of these chameleon rocks. -
THE SCIENTIFIC VALUATION of MINERALS Gaonen Lnrcnwonrh Engltsh, Rochester, New Vork. the Science of Mineralogy Would Be Distinct
JOURNAL MINERALOGICAL SOCIETY OF AMEMCA 197 1924. Ore problemsand the microscope. Con. Inst. oJ Min. and,Met., Bull,.No. 147,pp. 495-504, JuJy, 1924. The Windpassgold mine,Chu Chua,B. C. Can.Min. f our.,vol.45, No. 2, pp.47-49,4 figs.,Jan. ll,1924. 1926. Johnston,W. A. and Uglow, W. L. Placerand vein gold depositsof Barker- ville, B. C. Memoir l49,Can. Geol.Sun. Young, G. A. and Uglow, W. L. The iron ores of Canada. Vol. 1. British Columbia and Yukon. Geol.Surv. Can., EconomicGeol.. Series,No. 3. THE SCIENTIFIC VALUATION OF MINERALS Gaonen LnrcnwonrH ENGLTsH,Rochester, New Vork. The scienceof mineralogy would be distinctly benefited by the adoption of scientific methods in the valuation of minerals. It would aid in preventing the pricing of minerals higher than is justified by the advance in general commodity prices since 1914. Lower prices would become popular and these r /ould lead to a wider distribution of minerals and to the acquisition of more specimensby collectors and museums. While it is not likely that any scheme for the scientific valuation of minerals heretofore found would meet with general acceptance, the members of this Society could do much towards standardi2ing the methods of valuation of new finds which they make, and especially finds of new species. The desire to be reimbursed for large expenditures in collecting, frequently leads to the placing of abnormally high prices on the specimenssecured, while the finding of a new mineral engendersan enthusiasm which seemsto justify these prices, though it actually doesnot. If there is a considerable supply of specimens,high prices are not warranted, even though the cost to the finder is more than the total he can fairly ask for them.