Seifert Fiberings

Total Page:16

File Type:pdf, Size:1020Kb

Seifert Fiberings Mathematical Surveys and Monographs Volume 166 Seifert Fiberings Kyung Bai Lee Frank Raymond American Mathematical Society surv-166-lee3-cov.indd 1 10/21/10 11:26 AM http://dx.doi.org/10.1090/surv/166 Seifert Fiberings Seifert Fiberings Kyung Bai Lee Frank Raymond Mathematical Surveys and Monographs Volume 166 Seifert Fiberings Kyung Bai Lee Frank Raymond American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2000 Mathematics Subject Classification. Primary 55R55, 57S30, 57–XX; Secondary 53C30, 55R91, 58E40, 58D19, 57N16. For additional information and updates on this book, visit www.ams.org/bookpages/surv-166 Library of Congress Cataloging-in-Publication Data Lee, Kyung Bai, 1943– Seifert fiberings / Kyung Bai Lee, Frank Raymond. p. cm. — (Mathematical surveys and monographs : v. 166) Includes bibliographical references and index. ISBN 978-0-8218-5231-6 (alk. paper) 1. Fiberings (Mathematics). 2. Complex manifolds. I. Raymond, Frank, 1932– II. Title. QA612.6 .L44 2010 514.2—22 2010022528 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2010 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 151413121110 To Hyang, Myung, Kwang, Chung, Natasha, Nyra and Rob Acknowledgments We wish to acknowledge our debt to our many collaborators, teachers, students, and colleagues who have, over the years, contributed so much to our work and enjoyment of mathematics. We are also grateful for past financial support from University of Oklahoma and University of Michigan as well as from the National Science Foundation and RIP of the Mathematisches Institut Oberwolfach. Contents Preface xiii Chapter 1. Transformation Groups 1 1.1. Introduction 1 1.2. (Locally) Proper G-spaces 4 1.3. Fiber bundles 6 1.4. Classifying spaces 9 1.5. Borel spaces and classifying spaces 10 1.6. Tubular neighborhoods and slices 11 1.7. Existence of slices 15 1.8. Cohomology manifolds and the Smith theorems 18 1.9. Actions of G Π (G Lie group, Π discrete) 20 · Chapter 2. Group Actions and the Fundamental Group 23 2.1. Covering spaces 23 2.2. Lifting group actions to covering spaces 26 2.3. Lifting an action of G when G has a fixed point 28 2.4. Evaluation homomorphism 31 2.5. Lifting connected group actions 32 2.6. Example (Semi-free S1-actions on 3-manifolds) 35 2.7. Lifting the slice representation 39 2.8. Locally injective actions 42 Chapter 3. Actions of Compact Lie Groups on Manifolds 47 3.1. Actions of compact Lie groups on aspherical manifolds 47 3.2. Actions of compact Lie groups on admissible manifolds 54 3.3. Compact Lie group actions on spaces which map into K(Γ, 1) 59 3.4. Manifolds with few or no periodic homeomorphisms 65 3.5. Injective torus actions 66 Chapter 4. Definition of Seifert Fibering 69 4.1. Examples 69 4.2. TOPG(P ), the group of weak G-equivalences 73 4.3. Seifert fiberings modeled on a principal G-bundle 78 4.4. The topology and geometry of the fibers 81 4.5. Examples with Π discrete 83 4.6. The Seifert Construction 91 Chapter 5. Group Cohomology 95 5.1. Introduction 95 5.2. Group extensions 95 ix x CONTENTS 5.3. Pullback and pushout of short exact sequences 97 5.4. Extensions with Abelian kernel A and H2(Q; A) 100 5.5. Central extensions 102 5.6. Extensions with non-Abelian kernel G and H2(Q; (G)) 104 5.7. H1(Q; C) with a non-Abelian C Z 105 Chapter 6. Lie Groups 109 6.1. Introduction 109 6.2. Nilpotent Lie groups 111 6.3. Solvable Lie groups 114 6.4. Semisimple Lie groups 115 Chapter 7. Seifert Fiber Space Construction for G W 119 7.1. Introduction × 119 7.2. Cohomological criteria 120 7.3. Main Construction Theorem for TOPG(G W ) 122 7.4. The meaning of existence, uniqueness and× rigidity 123 7.5. Hp(Q; M(W, Rk)) = 0, p > 0 127 7.6. Proof of the Construction Theorem 131 7.7. When is θ injective? 135 7.8. Smooth case 137 Chapter 8. Generalization of Bieberbach’s Theorems 139 8.1. Bieberbach’s theorems 139 8.2. Proof of Bieberbach’s theorems 139 8.3. The First Bieberbach Theorem 143 8.4. The Second Bieberbach Theorem 151 8.5. The Third Bieberbach Theorem 156 Chapter 9. Seifert Manifolds with Γ G/K-Fiber 159 9.1. Introduction \ 159 9.2. The group TOPG,K(G/K W ) 160 ×0 9.3. When NG(K) = K and Aut (G, K) = 1 164 9.4. Symmetric spaces of noncompact type 166 9.5. Solvmanifolds 172 Chapter 10. Locally Injective Seifert Fiberings with Torus Fibers 179 10.1. Introduction 179 10.2. When does E(P, Q) split? 187 10.3. From local to global: H∗(Q; k) and H∗(Q; k) 190 10.4. The product case, Rk W T Z 198 10.5. Some aspects of the ′E×p,q-spectral sequence 201 Chapter 11. Applications 205 11.1. Existence of closed K(Π, 1)-manifolds 206 11.2. Rigidity of Seifert fibering 210 11.3. Lifting problem for homotopy classes 216 11.4. Polynomial structures for solvmanifolds 227 11.5. Applications to fixed-point theory 231 CONTENTS xi 11.6. Homologically injective torus operations 236 11.7. Maximal torus actions 248 11.8. Toral rank of spherical space forms 265 Chapter 12. Seifert Fiberings with Compact Connected Q 269 12.1. Introduction 269 12.2. Lifting Q-actions 269 12.3. Lifting Q-actions (for connected Q) 271 12.4. Examples 278 Chapter 13. Deformation Spaces 283 13.1. Uniformizing groups 283 13.2. PSL(2, R)-geometry 284 13.3. Lorentz structures and PSL(2, R)-geometry 288 13.4. Deformationg spaces for PSL(2, R)-geometry 290 13.5. Deformation spaces for Nil-geometryg 296 g Chapter 14. S1-actions on 3-dimensional Manifolds 299 14.1. Introduction 299 14.2. S1-actions on 3-manifolds 302 14.3. S1-actions on 3-manifolds as Seifert fiberings 304 14.4. The classification of S1-actions on closed aspherical 3-manifolds 309 14.5. The classification of S1-actions with fixed points on 3-manifolds 312 14.6. A complete set of invariants 314 14.7. The Euler number 318 14.8. Γ G as 3-dimensional Seifert manifolds 322 \ 14.9. H1(M; Z) 329 14.10. Injective holomorphic Seifert fiberings 331 14.11. Brieskorn complete intersections 335 14.12. Generalized Seifert 3-manifolds as local SO(2)-actions 338 14.13. A complete set of invariants for the 3-dimensional Seifert fiberings 344 14.14. Historical remarks 348 Chapter 15. Classification of Seifert 3-manifolds via equivariant cohomology 353 15.1. H2(Q; Zk) and codimension-2 injective actions 353 15.2. A presentation for H2(Q; ) 356 15.3. 3-dimensional spherical spaceZ forms 366 15.4. Seifert fiberings with Q Euclidean crystallographic 374 15.5. Seifert fiberings with Q hyperbolic 376 15.6. Equivariant classification 377 15.7. An Illustration 377 Bibliography 383 Index 393 Preface This book is an exploration of Seifert fiberings. These are mappings which extend the notion of fiber bundle mappings by allowing some of the fibers to be singular. Seifert fiberings are mappings whose typical fibers are homeomorphic to a fixed homogeneous space. The singular fibers are quotients of the homogeneous space by distinguished groups of homeomorphisms. In a remarkable paper, in 1933, Herbert Seifert, introduced a class of 3-manifolds which became known as Seifert manifolds. They play a very significant role in low dimensional topology and remain under intense scrutiny today. A Seifert manifold maps onto a 2-dimensional surface such that the inverse image of each point on the surface is homeomorphic to a circle. The set of singular fibers are isolated from each other and the typical fibers wind nontrivially around the singular fibers. We will describe in detail the Seifert 3-manifolds as a special case of the general con- struction of Seifert fiberings. Our major focus, however, is on higher dimensional phenomenon where the typical fiber is a homogeneous space. A major inspiration for a generalization to higher dimensions comes from trans- formation groups. Let (G, X) be a proper action of the connected Lie group G on x a path-connected X and examine the homomorphism ev∗ : π1(G, e) π1(X, x) induced by the evaluation map evx : g gx, g G. The image H →of evx is a 7→ ∈ ∗ central subgroup of π1(X, x) independent of the base point x. The G-action on X can be lifted to the covering space XH of X associated with the subgroup H of π1(X, x) so that π1(XH , x) = H.
Recommended publications
  • The Conjugation Degree on a Set of Metacyclic 3-Groups and 5-Groups with Their Related Graphs
    THE CONJUGATION DEGREE ON A SET OF METACYCLIC 3-GROUPS AND 5-GROUPS WITH THEIR RELATED GRAPHS SITI NORZIAHIDAYU AMZEE ZAMRI UNIVERSITI TEKNOLOGI MALAYSIA THE CONJUGATION DEGREE ON A SET OF METACYCLIC 3-GROUPS AND 5-GROUPS WITH THEIR RELATED GRAPHS SITI NORZIAHIDAYU AMZEE ZAMRI A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy Faculty of Science Universiti Teknologi Malaysia SEPTEMBER 2018 iii This thesis is specially dedicated to my dearest family, supervisor, colleagues and friends. iv ACKNOWLEDGEMENT It has been a very tough, memorable yet wonderful experience I had as I was writing and completing my PhD thesis for these three and a half years. For that, I would like to express my deepest gratitude towards my one and only supervisor, Prof Dr Nor Haniza Sarmin, for her unlimited support, patience, guidance and abundance of love as my mother in UTM. Besides, I would also like to thank my co-authors, Dr Sanaa Mohamed Saleh Omer, Dr Mustafa Anis El-Sanfaz and Dr Sanhan Muhammad Salih Khasraw for their help and guidance along my PhD journey. Also, I would like to express my love and thank to my family and UTM friends for their help, care and support. Not to forget my dearest besties, Noraihan Afiqah Rawi and Adnin Afifi Nawi who always had my back and for their never ending love and support. Finally, I would like to thank the Ministry of Higher Education Malaysia for MyPhD scholarship and also to Faculty of Science and Universiti Teknologi Malaysia for the conducive study environment.
    [Show full text]
  • GENERATORS of SPLIT EXTENSIONS of ABELIAN GROUPS by CYCLIC GROUPS3 of Unimodular Rows in M with Size N − 1 Under the Action Of
    GENERATORS OF SPLIT EXTENSIONS OF ABELIAN GROUPS BY CYCLIC GROUPS LUC GUYOT Abstract. Let G ≃ M ⋊ C be an n-generator group which is a split ex- tension of an Abelian group M by a cyclic group C. We study the Nielsen equivalence classes and T-systems of generating n-tuples of G. The sub- group M can be turned into a finitely generated faithful module over a suitable quotient R of the integral group ring of C. When C is infinite, we show that the Nielsen equivalence classes of the generating n-tuples of G correspond bijectively to the orbits of unimodular rows in M n−1 under the action of a subgroup of GLn−1(R). Making no assumption on the cardi- nality of C, we exhibit a complete invariant of Nielsen equivalence in the case M ≃ R. As an application, we classify Nielsen equivalence classes and T-systems of soluble Baumslag-Solitar groups, split metacyclic groups and lamplighter groups. 1. Introduction 1.1. Nielsen equivalence related to equivalence of unimodular rows. Given a finitely generated group G, we denote by rk(G) the minimal number of its generators. For n ≥ rk(G), we let Vn(G) be the set of generating n- vectors of G, i.e., the set of elements in Gn whose components generate G. In order to classify generating vectors, we can rely on a well-studied equivalence relation on Vn(G), namely the Nielsen equivalence relation: two generating n-vectors are said to be Nielsen equivalent if they can be related by a finite sequence of transformations taken in the set {Lij,Ii;1 ≤ i =6 j ≤ n} where g arXiv:1604.08896v6 [math.GR] 22 Jun 2018 Lij and Ii replace the component gi of = (g1,...,gn) ∈ Vn(G) by gjgi and −1 gi respectively and leave the other components unchanged.
    [Show full text]
  • The Schur Multiplicator of Metacyclic Groups'
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 40, Number 2, October 1973 THE SCHUR MULTIPLICATOR OF METACYCLIC GROUPS' F. RUDOLF BEYL Abstract. The Schur multiplicator Hfi of a (finite) meta- cyclic group G is computed with the help of the Lyndon spectral sequence. The order of Hfi is a useful invariant of G. A metacyclic group with vanishing Schur multiplicator can be presented with two generators and two relators. A simple description of the totality of these groups is given and all such /»-groups are classified. 1. Introduction. All groups in this note are finite. The group G is called metacyclic if it has a cyclic normal subgroup which yields a cyclic factor group. If M and N are natural numbers, and r and X integers, and r'v=l mod M, then we introduce G(M, N, r, X) = (a, b:aM = 1, b • a ■ZT1 = a\ bN = ß*^^'-i>). Obviously, G(M, N, r, X) is supported by the metacyclic extension (1) e(M, N, r, X):TZMàJL^. g(M, N, r, X) -^-» Cv, where CN is the cyclic group of order N and 2,M the additive cyclic group of order M, and the distinguished generator c of C^ operates on Zw by multiplication by r. (We indicate this by the superscript.) Moreover, 77 maps b to c and a to 1 and k embeds Zjf as the cyclic subgroup of G generated by a. It is well known [6, III §7] that all metacyclic groups can be presented as in (1). Our main result is that the Schur multiplicator H2G(M, N, r, X) is the cyclic group of order (X, h(M, N, r)) where (2) h(M, N, r) = M"1 • (M, r - 1) • (M, 1 + r + • ■■ + r^1) Received by the editors January 29, 1973.
    [Show full text]
  • A NOTE on FINITE GROUPS with FEW TI-SUBGROUPS Jiangtao Shi
    International Electronic Journal of Algebra Volume 23 (2018) 42-46 DOI: 10.24330/ieja.373640 A NOTE ON FINITE GROUPS WITH FEW TI-SUBGROUPS Jiangtao Shi, Jingjing Huang and Cui Zhang Received: 10 June 2016; Revised: 29 July 2017; Accepted: 10 August 2017 Communicated by Abdullah Harmancı Abstract. In [Comm. Algebra, 43(2015), 2680-2689], finite groups all of whose metacyclic subgroups are TI-subgroups have been classified by S. Li, Z. Shen and N. Du. In this note we investigate a finite group all of whose non-metacyclic subgroups are TI-subgroups. We prove that G is a group all of whose non-metacyclic subgroups are TI-subgroups if and only if all non- metacyclic subgroups of G are normal. Furthermore, we show that a group all of whose non-cyclic subgroups are TI-subgroups has a Sylow tower. Mathematics Subject Classification (2010): 20D10 Keywords: Non-metacyclic subgroup, TI-subgroup, normal, solvable, Sylow tower 1. Introduction In this paper all groups are assumed to be finite. Let G be a group. If G has a cyclic normal subgroup H such that G=H is cyclic, then G is said to be a metacyclic group. It is obvious that a cyclic group is also a metacyclic group but a metacyclic group might not be a cyclic group. Let G be a group and K a subgroup of G. If Kg \K = 1 or K for all g 2 G, then K is called a TI-subgroup of G. It is clear that every normal subgroup of a group G is a TI-subgroup of G but a TI-subgroup of G might not be a normal subgroup of G.
    [Show full text]
  • Coherence, Subgroup Separability, and Metacyclic Structures for a Class of Cyclically Presented Groups
    Accepted Manuscript Coherence, subgroup separability, and metacyclic structures for a class of cyclically presented groups William A. Bogley, Gerald Williams PII: S0021-8693(17)30088-1 DOI: http://dx.doi.org/10.1016/j.jalgebra.2017.02.002 Reference: YJABR 16106 To appear in: Journal of Algebra Received date: 29 June 2016 Please cite this article in press as: W.A. Bogley, G. Williams, Coherence, subgroup separability, and metacyclic structures for a class of cyclically presented groups, J. Algebra (2017), http://dx.doi.org/10.1016/j.jalgebra.2017.02.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Coherence, subgroup separability, and metacyclic structures for a class of cyclically presented groups William A.Bogleya, Gerald Williamsb aDepartment of Mathematics, Kidder Hall 368, Oregon State University, Corvallis, OR 97331-4605, USA. bDepartment of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK. Abstract We study a class M of cyclically presented groups that includes both finite and infinite groups and is defined by a certain combinatorial condition on the defin- ing relations. This class includes many finite metacyclic generalized Fibonacci groups that have been previously identified in the literature.
    [Show full text]
  • UNITS in Fqk (Cp N. Makhijani, RK Sharma and JB
    International Electronic Journal of Algebra Volume 18 (2015) 21-33 UNITS IN Fqk (Cp or Cq) N. Makhijani, R. K. Sharma and J. B. Srivastava Received: 5 February 2014 Communicated by A. C¸i˘gdem Ozcan¨ k Abstract. Let q be a prime, Fqk be a finite field having q elements and n q −1 r Cn or Cq be a group with presentation h a; b j a ; b ; b ab = a i, where (n; rq) = 1 and q is the multiplicative order of r modulo n. In this paper, we address the problem of computing the Wedderburn decomposition of the group algebra Fqk (Cn or Cq) modulo its Jacobson radical. As a consequence, the structure of the unit group of Fqk (Cp or Cq) is obtained when p is a prime different from q. Mathematics Subject Classification (2010): 16U60, 16S34, 20C05 Keywords: Unit group, group algebra, Wedderburn decomposition 1. Introduction Let FG be the group algebra of a finite group G over a field F and U(FG) be its unit group. The study of the group of units is one of the classical topics in group ring theory and has applications in coding theory (cf. [17, 28]) and cryptography (cf. [18]). Results obtained in this direction are useful for the investigation of Lie properties of group rings, isomorphism problem and other open questions in this area [6]. In [3], Bovdi gave a comprehensive survey of results concerning the group of units of a modular group algebra of characteristic p. There is a long tradition on the study of the unit group of finite group algebras [4, 5, 12{16, 22, 25, 26].
    [Show full text]
  • VIRTUALLY CYCLIC DIMENSION for 3-MANIFOLD GROUPS 1. Introduction Given a Group Γ, We Say That a Collection of Subgroups F Is Ca
    VIRTUALLY CYCLIC DIMENSION FOR 3-MANIFOLD GROUPS KYLE JOECKEN, JEAN-FRANC¸OIS LAFONT, AND LUIS JORGE SANCHEZ´ SALDANA~ Abstract. Let Γ be the fundamental group of a connected, closed, orientable 3-manifold. We explicitly compute its virtually cyclic geometric dimension gd(Γ). Among the tools we use are the prime and JSJ decompositions of M, several push-out type constructions, as well as some Bredon cohomology computations. 1. Introduction Given a group Γ, we say that a collection of subgroups F is called a family if it is closed under conjugation and under taking subgroups. We say that a Γ-CW-complex X is a model for the H classifying space EF Γ if every isotropy group of X belongs to F, and X is contractible whenever H belongs to F. Such a model always exists and it is unique up to Γ-homotopy equivalence. The geometric dimension of Γ with respect to the family F, denoted gdF (Γ), is the minimum dimension n such that Γ admits an n-dimensional model for EF Γ. Classical examples of families are the family that consists only of the trivial subgroup f1g, and the family F IN of finite subgroups of Γ. A group is said to be virtually cyclic if it contains a cyclic subgroup (finite or infinite) of finite index. We will also consider the family V CYC of virtually cyclic subgroups of Γ. These three families are relevant to the Farrell{Jones and the Baum{Connes isomorphism conjectures. In the present paper we study gdV CYC (Γ) (also denoted gd(Γ)) when Γ is the fundamental group of an orientable, closed, connected 3-manifold.
    [Show full text]
  • 10 Iranian Group Theory Conference (IGTC 2018)
    Iranian Group Theory Society Kharazmi University 10th Iranian Group Theory Conference th 10 Iranian Group Theory Conference Extended Abstract Booklet University of Kharazmi (IGTC 2018) Tehran, Iran 24-26 January, 2018 http://igtc.khu.ac.ir/ Iranian Group Theory Society Kharazmi University 10th Iranian Group Theory Conference Scientific Committee Chair: Reza Orfi (Kharazmi University) Alireza Abdollahi (Isfahan University ) Hassan Alavi (Buali Sina University) Alireza Ashrafi (Kashan University) Mohammad Reza Darafsheh (Tehran University ) Hossein Doostie (Kharazmi University) Shirin Fouladi (Kharazmi University) Alireza Jamali (Kharazmi University) Behrouz Khosravi (Amirkabir University of Technology) Alireza Moghaddamfar (K.N.Toosi University of Technology) Hamid Mousavi (Tabriz University ) Mohammad Reza Rajabzadeh Moghaddam (Ferdowsi University ) Mojtaba Ramezan Nassab (Kharazmi Universty) Mohammad Reza Salarian (Kharazmi University) Mohammad Shahriary ( Tabriz University ) Iranian Group Theory Society Kharazmi University 10th Iranian Group Theory Conference Executive Committee Chair: Esmail Babolian Keivan Borna Morteza Essmaili Shahnam Javadi Reza Orfi Mojtaba Ramezan Nassab Amir H. Sanatpour Iranian Group Theory Society Kharazmi University 10th Iranian Group Theory Conference Contents Plenary Talks The classification of p-groups Bettina Eick ……………………………………………………………………… 1 Artin’s conjecture Sophie Morel …………………………………………………………………… 2 A history of the order of the multipliers of p-groups and Lie algebra Mohsen Parvizi ………………………………………………………………….
    [Show full text]
  • The Birman Exact Sequence for 3–Manifolds
    This is the accepted version of the following article: Banks, J. E. (2017), The Birman exact sequence for 3‐manifolds. Bull. London Math. Soc., 49: 604-629. doi:10.1112/blms.12051 The Birman exact sequence for 3{manifolds Jessica E. Banks Abstract We study the Birman exact sequence for compact 3{manifolds, ob- taining a complete picture of the relationship between the mapping class group of the manifold and the mapping class group of the submanifold ob- tained by deleting an interior point. This covers both orientable manifolds and non-orientable ones. 1 Introduction The mapping class group Mod(M) of a manifold M is the group of isotopy equivalence classes of self-homeomorphisms of M. In [2], Birman gave a re- lationship (now known as the `Birman exact sequence') between the mapping class group of a manifold M and that of the same manifold with a finite number of points removed, focusing particularly on the case that M is a surface. When only one puncture is added, the result is as follows. Theorem 1.1 ([5] Theorem 4.6; see also [2] Theorem 1 and Corollary 1.3, and [3] Theorem 4.2). Let M be a compact, orientable surface with χ(M) < 0. Choose p 2 int(M) and set Mp = M n fpg. Then there is an exact sequence 1 ! π1(M; p) ! Mod(Mp) ! Mod(M) ! 1: The aim of this paper is to prove the following analogue of this for compact 3{manifolds. Theorem 6.4. Let M be a compact, connected 3{manifold, not necessarily orientable.
    [Show full text]
  • Character Tables of Metacyclic Groups
    Glasgow Math. J. 57 (2015) 387–400. C Glasgow Mathematical Journal Trust 2014. doi:10.1017/S0017089514000366. CHARACTER TABLES OF METACYCLIC GROUPS STEPHEN P. HUMPHRIES AND DANE C. SKABELUND Department of Mathematics, Brigham Young University, Provo, UT 84602, U.S.A. e-mail: [email protected], [email protected] (Received 4 June 2013; accepted 8 April 2014; first published online 17 December 2014) Abstract. We show that two metacyclic groups of the following types are isomorphic if they have the same character tables: (i) split metacyclic groups, (ii) the metacyclic p-groups and (iii) the metacyclic {p, q}-groups, where p, q are odd primes. 2010 Mathematics Subject Classification. Primary 20C15; Secondary 20D15, 20F16, 20F22. 1. Introduction. A group G is metacyclic if it has a cyclic normal subgroup K such that G/K is cyclic. Equivalently, the group G has cyclic subgroups S and K, with K normal in G, such that G = SK. If we can find such H, K with H ∩ K ={1}, then we say that G is split metacyclic.ItwasshownbyHolder¨ [11, Theorem 7.21] that a group is metacyclic if and only if it has a presentation of the form α δ β a γ G = Gα,β,γ,δ =a, b | a = b , b = 1, b = b , where gcd(β,γ) = 1,β | (γ α − 1) and β | δ(γ − 1). However, in general the parameters α, β, γ ,andδ are not invariants of the group G. Note that if δ = 0, then G is split metacyclic. One says that two groups G, G have the same character tables if there is a bijection χ ↔ χ of their irreducible characters and a bijection (g)G ↔ (g)G of their classes such that χ(g) = χ (g).
    [Show full text]
  • The Symmetric Genus of Metacyclic Groups
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector TOPOLOGY AND ITS APPLICATIONS ELSEIVIER Topology and its Applications 66 (1995) 101-I 15 The symmetric genus of metacyclic groups Coy L. May *,I, Jay Zimmerman 2 Department of Mathematics, Towson State University, Baltimore, MD 21204, USA Received 19 July 1993; revised 24 February 1995 Abstract Let G be a finite group. The symmetric genus of G is the minimum genus of any Riemann surface on which G acts faithfully. Here we determine a useful lower bound for the symmetric genus of a finite group with a cyclic quotient group. The lower bound is attained for the family of K-metacyclic groups, and we determine the symmetric genus of each nonabelian subgroup of a K-metacyclic group. We also provide some examples of other groups for which the iower bound is attained. We use the standard representation of a finite group as a quotient of a noneuclidean crystallographic (NEC) group by a Fuchsian surface group. Keywords: Symmetric genus; Riemann surface; Metacyclic group; Noneuclidean crystallographic group; Automorphism group AMS ~Zusszjkation: Primary 57M60, Secondary 20HlO; 3OF3.5 1. Introduction The symmetric genus a(G) [I91 of a finite group G is the minimum genus of any Rieniann surface on which G acts faithfully (possibly reversing orientation). There are now many results on the symmetric genus of various classes of groups. For example, the symmetric genus of a finite abelian group has been completely determined [ 131. The groups which have symmetric genus zero are also well known, and the groups of symmetric genus one have been classified in a sense [6, Section 6.3.31; also see [16].
    [Show full text]
  • Topological Spherical Space Forms 3
    TOPOLOGICAL SPHERICAL SPACE FORMS IAN HAMBLETON Abstract. Free actions of finite groups on spheres give rise to topological spherical space forms. The existence and classification problems for space forms have a long history in the geometry and topology of manifolds. In this article, we present a survey of some of the main results and a guide to the literature. 1. Introduction A Clifford-Klein space form is a closed Riemannian manifold with constant sectional curvature. A classical result in differential geometry states that space forms are just the quotients of the standard models Sn, Rn and Hn for spherical, Euclidean, or hyperbolic geometry by discrete groups of isometries acting freely and properly discontinuously (see [21, Chap. 8]). The spherical space forms have now been completely classified, answering the original question of Killing [37] from 1890. Extensive information for both compact and non-compact space forms is contained in Wolf [35]. In 1926, Hopf [36] determined the fundamental groups of three-dimensional spherical space forms, and asked whether every closed, oriented 3-manifold with finite fundamental group admits a Riemannian metric of constant positive curvature. In particular, this topological question is a generalization of the famous Poincar´econjecture to the non- simply connected case. By 2005, both Hopf’s question and the Poincar´econjecture were finally answered by Perelman [8], building on the Ricci flow techniques of Hamilton [54], in the process of veriflying the Thurston Geometrization conjecture (see [17, 25, 29, 30]). The topological spherical space form problem [13] generalizes Hopf’s question to higher dimensions: which finite groups can act freely on spheres via homeomorphisms or diffeo- arXiv:1412.8187v1 [math.GT] 28 Dec 2014 morphisms ? How can one classify free (smooth or topological) finite group actions on spheres ? These questions have led to an enormous amount of research in algebraic and geometric topology over the last hundred years, and substantial progress has been made.
    [Show full text]