Advances in Targeted Degradation of Endogenous Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Targeted Degradation of Endogenous Proteins Cellular and Molecular Life Sciences https://doi.org/10.1007/s00018-019-03112-6 Cellular andMolecular Life Sciences REVIEW Advances in targeted degradation of endogenous proteins Sascha Röth1 · Luke J. Fulcher1 · Gopal P. Sapkota1 Received: 11 January 2019 / Revised: 23 March 2019 / Accepted: 16 April 2019 © The Author(s) 2019 Abstract Protein silencing is often employed as a means to aid investigations in protein function and is increasingly desired as a thera- peutic approach. Several types of protein silencing methodologies have been developed, including targeting the encoding genes, transcripts, the process of translation or the protein directly. Despite these advances, most silencing systems sufer from limitations. Silencing protein expression through genetic ablation, for example by CRISPR/Cas9 genome editing, is irreversible, time consuming and not always feasible. Similarly, RNA interference approaches warrant prolonged treatments, can lead to incomplete protein depletion and are often associated with of-target efects. Targeted proteolysis has the potential to overcome some of these limitations. The feld of targeted proteolysis has witnessed the emergence of many methodologies aimed at targeting specifc proteins for degradation in a spatio-temporal manner. In this review, we provide an appraisal of the diferent targeted proteolytic systems and discuss their applications in understanding protein function, as well as their potential in therapeutics. Keywords Nanobody · Monobody · Ubiquitin · Proteasome · Auxin · Afnity-directed protein missile · VHL · CRBN · AiD · HALO · FKBP12 · Thalidomide · Proteolysis targeting chimera · PROTAC Introduction against viral infections, which acts to cleave foreign DNA or RNA from invading pathogens, thereby limiting infection Understanding the inherent function of a protein is a cor- [1]. Back in 2012, this system was adapted as a powerful nerstone in life sciences. Many biochemical and biophysical genome editing tool [2] which could be utilized to either properties of proteins can be ascertained in vitro; however, knockout a target gene, or introduce new DNA sequences a key drawback of these approaches is the absence of the into the genome in eukaryotic cells (Fig. 1, top). While cellular context. In cellulo research on the function of a pro- CRISPR/Cas9 has since become an easy, cost-effective tein of interest (POI) often relies on its deletion or depletion method for genome editing, it cannot be used for all targets, from cells to screen for changes in, for example, phenotype, as single cell clones of essential gene knockouts will not signalling or gene expression patterns. Two current rou- survive the clonal selection process. Additionally, CRISPR/ tine approaches used to achieve POI deletion or depletion Cas9 genome editing usually does not interfere with tran- are genome editing, for example by using CRISPR/Cas9- scription, but relies on the deletion of the start codon or mediated gene knockout, and RNA interference (RNAi), introduction of nonsense mutations. However, mutagenesis respectively. by CRISPR can result in exon skipping, generating a difer- With recent advances in CRISPR/Cas9 genome editing, ent start codon, resulting in truncations of the protein still targeted knockout of genes in cells, tissues and whole organ- being translated [3]. Even in the case of a true gene knock- isms has been widely utilized to assess protein function. out, however, the time required for a single cell clone to CRISPR/Cas9 is a bacterial and archaeal defence mechanism propagate might be sufcient for cells to establish genetic compensation, thereby altering expression patterns of related proteins to make up for the loss of one protein [4]. Because * Gopal P. Sapkota gene knockouts are irreversible, the homeostatic changes in [email protected] knockout cell clones might be very diferent from parental 1 MRC Protein Phosphorylation and Ubiquitylation Unit, cells. Therefore, any interpretation of changes due to the School of Life Sciences, University of Dundee, Dow Street, loss of a POI relies on the ability to rescue phenotypes by Dundee DD1 5EH, UK Vol.:(0123456789)1 3 S. Röth et al. PROCON - Irreversible CRISPR/Cas9 DNA - Complete KO cells through all stages Tr - Can keep and use cells - Not feasible for anscriptio over time essential genes or certain - Can target isoforms based cell systems on splicing pattern - Compensation - Truncation possible n - Can target essential RNAi RNA gene products Tr - Can target gene families anslation based on sequence similarities relies on protein turnover - Can target isoforms - Prolonged treatments based on unique required sequences - Can be time consuming Targeted Protein - Independent of to develop, based on Proteolysis regulation on DNA/RNA - Can target essential - Limited availability of proteins POI-targeting nanobod- - Tractable based on ies or small molecules system being used - Limited number of Fig. 1 Comparison of protein silencing tools and their advantages transcripts. This in turn efectively blocks translation of the protein. (PRO) and disadvantages (CON). Top: CRISPR/Cas9 genome editing Bottom: targeted proteolysis: While both transcription and translation results in mutations of target gene sequence, typically through dele- remain unafected, through mechanisms described for the diferent tion of the start ATG codon, and introduction of early stop codons proteolytic methods, the target protein is directly marked for protea- or frame shifts. While transcripts are still produced, translation is somal degradation blocked. Middle: RNAi approaches result in cleavage of the mRNA restoring the POI expression. This approach is not always the turnover of the target protein for efcient reduction in feasible and often relies on the use of artifcial and constitu- target protein levels. For silencing of most POIs, RNAi is tive promoters to drive protein expression. usually efective only after 48–72 h of treatment. However, RNAi-mediated depletion of a target POI transcript for those proteins that have very slow turnover rates that sur- is a potential way to circumvent some of the problems of pass this time frame [7], RNAi approaches will not yield the CRISPR/Cas9 genome editing highlighted above, as this desired knockdown of target transcripts. Another common technique is performed in a much shorter time frame than issue associated with RNAi appears to be of-target silenc- that required for a genetic knockout. In metazoan cells, RNAi ing of transcripts based on partial sequence complementa- approaches include short interfering RNAs (siRNAs), micro- rity [8], despite great eforts going into the optimization of RNAs (miRNAs) and short hairpin RNAs (shRNA) [5]. In siRNA sequence design or delivery to minimize potential all of these cases, the RNAi machinery triggers the activa- of-target efects [9]. tion of the RNAi-induced silencing complex (RISC) and, An alternative approach, circumventing the challenges of depending on sequence complementarity, results in either protein silencing through genomic alterations or transcript degradation of the target RNA or inhibition of its transla- inhibition, is the direct targeting of proteins for destruc- tion (Fig. 1, middle) [6], leading to post-transcriptional gene tion. Targeted proteolysis is desirable both in therapeutic silencing. While these methods enable the opportunity to applications and in basic research. To date, such proteolytic target transcripts of essential genes, they ultimately rely on approaches have relied on the cells’ built-in protein recycling 1 3 Advances in targeted degradation of endogenous proteins centre, known as the ubiquitin–proteasome system (UPS). In of transcriptional repressor proteins are rapidly degraded short, proteins are marked for destruction through the cova- through a specifc form of the SCF (SKP–cullin–F-Box)- lent attachment of the small protein ubiquitin onto primarily RING E3 Ligase system [24, 25]. Auxin hormones bind to lysine residues on the target protein [10, 11]. The frst step the F-box transport inhibitor response 1 (TIR1) protein and, of the reaction is mediated by the E1 ubiquitin-activating in doing so, promote the association between the SCF-TIR1 enzyme that activates the ubiquitin monomer. Subsequently, E3 ligase complex with AUX/IAA transcriptional repres- the activated ubiquitin is passed on to the E2 ubiquitin-con- sors, ultimately leading to the ubiquitination and degrada- jugating enzyme, before ultimately being attached to the tion of the AUX/IAA transcriptional repressors [24, 25]. target protein through the action of an E3 ubiquitin ligase. Whilst other eukaryotes lack this auxin-inducible response, The ubiquitin monomers can be further ubiquitinated to form the SCF degradation pathway is conserved, thereby raising chains, with distinct chain types linked to specifc biologi- the tantalizing possibility that the auxin-inducible degrada- cal processes [12–14]. For example, and of relevance here, tion pathway could be transferred into other eukaryotic cells. if ubiquitin molecules added to the target protein form a The Kanemaki lab demonstrated this possibility with rapid, lysine 48-linked chain, the ubiquitinated protein is marked reversible degradation of essential POIs in cell lines derived for proteasomal degradation [12, 13]. The proteasome itself from various organisms including chicken, mouse, yeast, and is a cylindrical multimeric protein complex composed of humans [24]. They achieved this through fusion of an IAA17 a 20S core particle
Recommended publications
  • Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases
    Antibodies 2015, 4, 170-196; doi:10.3390/antib4030170 OPEN ACCESS antibodies ISSN 2073-4468 www.mdpi.com/journal/antibodies Review Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases Marta Westwood * and Alastair D. G. Lawson Structural Biology, UCB, 216 Bath Road, Slough, SL1 3WE UK; E-Mail: [email protected]. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-1-753-534-655 (ext.7749); Fax: +44-1-753-536-632. Academic Editor: Dimiter S. Dimitrov Received: 13 May 2015 / Accepted: 9 July 2015 / Published: 15 July 2015 Abstract: Assembly of misfolded proteins into fibrillar deposits is a common feature of many neurodegenerative diseases. Developing effective therapies to these complex, and not yet fully understood diseases is currently one of the greatest medical challenges facing society. Slow and initially asymptomatic onset of neurodegenerative disorders requires profound understanding of the processes occurring at early stages of the disease including identification and structural characterisation of initial toxic species underlying neurodegeneration. In this review, we chart the latest progress made towards understanding the multifactorial process leading to amyloid formation and highlight efforts made in the development of therapeutic antibodies for the treatment of amyloid-based disorders. The specificity and selectivity of conformational antibodies make them attractive research probes to differentiate between transient states preceding formation of mature fibrils and enable strategies for potential therapeutic intervention to be considered. Keywords: antibody; amyloids; conformation; prion; Alzheimer’s; Parkinson’s; fibrils, tau; Huntingtin; protein misfolding 1. Introduction Correct protein folding is crucial for maintaining healthy biological functions.
    [Show full text]
  • Rapid Selection of Specific MAP Kinase-Binders from Designed Ankyrin Repeat Protein Libraries
    Protein Engineering, Design & Selection vol. 19 no. 5 pp. 219–229, 2006 Published online March 21, 2006 doi:10.1093/protein/gzl004 Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries Patrick Amstutz1,4,5, Holger Koch1,4, H. Kaspar Binz1, form in this milieu. For this reason, antibodies were Stefan A. Deuber2 and Andreas Plu¨ckthun1,3 engineered for higher intracellular stability with some success 1 et al ¨ ¨ Biochemisches Institut der Universita¨tZu¨rich, Winterthurerstrasse 190, (Proba ., 1998; Worn and Pluckthun, 1998; Desiderio CH-8057 Zu¨rich, Switzerland and 2Institut fu¨r Medizinische Virologie der et al., 2001; Visintin et al., 2002), but the number of selected Universita¨tZu¨rich, Gloriastrasse 30, Zu¨rich, Switzerland and active binders is usually limited (Tanaka and Rabbitts, 3To whom correspondence should be addressed. 2003; Koch et al., 2006). These results can be explained by E-mail: [email protected] the selection pressure, which not only places demands on 4These authors contributed equally to this work. 5 specific binding but also requires stability under reducing Present address: Molecular Partners AG, c/o Universita¨tZu¨rich, conditions. Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland To overcome these limitations of immunoglobulin We describe here the rapid selection of specific MAP-kinase domains, a variety of novel scaffolds for the generation of binders from a combinatorial library of designed ankyrin antibody-like binding molecules, some of them possessing repeat proteins (DARPins). A combined in vitro/in vivo selec- very favorable biophysical properties, has been developed tion approach, based on ribosome display and the protein (Nygren and Skerra, 2004; Binz et al., 2005).
    [Show full text]
  • Nanobodies Right in the Middle: Intrabodies As Toolbox to Visualize and Modulate Antigens in the Living Cell
    biomolecules Review Nanobodies Right in the Middle: Intrabodies as Toolbox to Visualize and Modulate Antigens in the Living Cell Teresa R. Wagner 1,2 and Ulrich Rothbauer 1,2,* 1 Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; [email protected] 2 Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany * Correspondence: [email protected]; Tel.: +49-7121-5153-0415; Fax: +49-7121-5153-0816 Received: 30 November 2020; Accepted: 18 December 2020; Published: 21 December 2020 Abstract: In biomedical research, there is an ongoing demand for new technologies to elucidate disease mechanisms and develop novel therapeutics. This requires comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, post-translational modifications and dynamic interactions of cellular components. Traceable intracellular binding molecules provide new opportunities for real-time cellular diagnostics. Most prominently, intrabodies derived from antibody fragments of heavy-chain only antibodies of camelids (nanobodies) have emerged as highly versatile and attractive probes to study and manipulate antigens within the context of living cells. In this review, we provide an overview on the selection, delivery and usage of intrabodies to visualize and monitor cellular antigens in living cells and organisms. Additionally, we summarize recent advances in the development of intrabodies as cellular biosensors and their application to manipulate disease-related cellular processes. Finally, we highlight switchable intrabodies, which open entirely new possibilities for real-time cell-based diagnostics including live-cell imaging, target validation and generation of precisely controllable binding reagents for future therapeutic applications. Keywords: nanobody; intrabody; phage display; live-cell imaging; biosensors; target validation 1.
    [Show full text]
  • Designer Oncolytic Adenovirus: Coming of Age
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2018 doi:10.20944/preprints201805.0273.v1 Designer Oncolytic Adenovirus: Coming of Age Alexander T. Baker1, Carmen Aguirre-Hernandez2, Gunnel Hallden2, Alan L. Parker1* 1 Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, United Kingdom 2 Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom *Corresponding author Dr. Alan L. Parker Division of Cancer and Genetics Henry Wellcome Building Cardiff University School of Medicine Heath Park Cardiff CF14 4XN Email: [email protected] Keywords: adenovirus; oncolytic; targeting; virotherapy; cancer; αvβ6 integrin; immunotherapy; tropism 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2018 doi:10.20944/preprints201805.0273.v1 Contents 1. Introduction: ................................................................................................................................... 4 2. Replication-selective adenoviruses ..................................................................................................... 6 2.1 Combination of oncolytic adenoviruses with chemotherapy ..................................................... 11 3. Oncolytic immunotherapy ................................................................................................................ 12 4. Tropism modification strategies ......................................................................................................
    [Show full text]
  • Article in Press
    G Model MIMM-4561; No. of Pages 12 ARTICLE IN PRESS Molecular Immunology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Alternative molecular formats and therapeutic applications for ଝ bispecific antibodies ∗ Christoph Spiess, Qianting Zhai, Paul J. Carter Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA a r t i c l e i n f o a b s t r a c t Article history: Bispecific antibodies are on the cusp of coming of age as therapeutics more than half a century after they Received 28 November 2014 ® were first described. Two bispecific antibodies, catumaxomab (Removab , anti-EpCAM × anti-CD3) and Received in revised form ® blinatumomab (Blincyto , anti-CD19 × anti-CD3) are approved for therapy, and >30 additional bispecific 30 December 2014 antibodies are currently in clinical development. Many of these investigational bispecific antibody drugs Accepted 2 January 2015 are designed to retarget T cells to kill tumor cells, whereas most others are intended to interact with two Available online xxx different disease mediators such as cell surface receptors, soluble ligands and other proteins. The modular architecture of antibodies has been exploited to create more than 60 different bispecific antibody formats. Keywords: These formats vary in many ways including their molecular weight, number of antigen-binding sites, Bispecific antibodies spatial relationship between different binding sites, valency for each antigen, ability to support secondary Antibody engineering Antibody therapeutics immune functions and pharmacokinetic half-life. These diverse formats provide great opportunity to tailor the design of bispecific antibodies to match the proposed mechanisms of action and the intended clinical application.
    [Show full text]
  • Targeting Ras with Macromolecules
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Targeting Ras with Macromolecules Dehua Pei, Kuangyu Chen, and Hui Liao Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 Correspondence: [email protected] Activating Ras mutations are associated with 30% of all human cancers and the four Ras isoforms are highly attractive targets for anticancer drug discovery. However, Ras proteins are challenging targets for conventional drug discovery because they function through intracel- lular protein–protein interactions and their surfaces lack major pockets for small molecules to bind. Over the past few years, researchers have explored a variety of approaches and modalities, with the aim of specifically targeting oncogenic Ras mutants for anticancer treatment. This perspective will provide an overview of the efforts on developing “macro- molecular” inhibitors against Ras proteins, including peptides, macrocycles, antibodies, nonimmunoglobulin proteins, and nucleic acids. as is a small GTPase, acting as a molecular Mutations in K-Ras are particularly prevalent in Rswitch in many signaling pathways and some of the most deadly cancers, including pan- regulating cell proliferation, differentiation, creatic (90% prevalence), colon (35% preva- and survival, among other functions (Young lence), and lung cancers (16% prevalence). Dis- et al. 2009). Its four isoforms, H-Ras, N-Ras, ruption of Ras function genetically (i.e., by gene K-Ras4A, and K-Ras4B, are identical within mutations or small-interfering RNA [siRNA]) the amino-terminal 85 amino acids and differ inhibits the proliferation of Ras-mutant cancer primarily in the carboxyl-termini (amino acids cells and induces apoptosis, validating Ras as 165–189).
    [Show full text]
  • Strategies for Selecting Membrane Protein-Specific Antibodies Using Phage Display with Cell-Based Panning
    antibodies Review Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning Mohamed A. Alfaleh 1,2,* ID , Martina L. Jones 1,3,* ID , Christopher B. Howard 1,3,4 and Stephen M. Mahler 1,3 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia; [email protected] (C.B.H.); [email protected] (S.M.M) 2 Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia 3 Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia 4 Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia * Correspondence: [email protected] (M.A.A.); [email protected] (M.L.J.); Tel.: +61-733-463-178 (M.L.J.) Academic Editor: Dimiter S. Dimitrov Received: 14 June 2017; Accepted: 7 July 2017; Published: 5 August 2017 Abstract: Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest.
    [Show full text]
  • A Genetically-Encoded Toolkit of Functionalized Nanobodies Against Fluorescent Proteins
    bioRxiv preprint doi: https://doi.org/10.1101/544700; this version posted April 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A genetically-encoded toolkit of functionalized nanobodies against fluorescent proteins 2 for visualizing and manipulating intracellular signalling 3 4 David L. Prole1,* and Colin W. Taylor1,* 5 1Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge 6 CB2 1PD, United Kingdom 7 8 *For correspondence: [email protected], [email protected] 9 10 Short title 11 Functionalized nanobodies for studying intracellular signalling 12 13 Keywords: cell signalling, endoplasmic reticulum, fluorescence microscopy, fluorescent 14 protein, GFP, intrabody, membrane contact site, mitochondria, nanobody, RFP. 1 bioRxiv preprint doi: https://doi.org/10.1101/544700; this version posted April 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 15 Abbreviations 2+ 2+ 16 BFP, blue fluorescent protein; [Ca ]c, cytosolic free Ca concentration; CALI, 17 chromophore-assisted light inactivation; CaM, calmodulin; CFP, cyan fluorescent protein; 18 ER, endoplasmic reticulum; FKBP, FK506-binding protein; FRB, FKBP-rapamycin-binding 19 domain; FP, fluorescent protein; GFP, green fluorescent protein; GNb, GFP-binding 20 nanobody; HBS, HEPES-buffered saline; IP3R, inositol 1,4,5-trisphosphate receptor; 21 LAMP1, lysosomal membrane protein 1; mCherry, monomeric Cherry; MCS, membrane 22 contact site; MHBS, modified HBS; MP, multimerizing protein; mRFP, monomeric red 23 fluorescent protein; OMM, outer mitochondrial membrane; PM, plasma membrane; RFP, red 24 fluorescent protein; RNb, RFP-binding nanobody; ROI, region of interest; SOCE, store- 25 operated Ca2+ entry; TIRFM, total internal reflection fluorescence microscopy; YFP, yellow 26 fluorescent protein.
    [Show full text]
  • Advances in Targeted Degradation of Endogenous Proteins Roth, Sascha; Fulcher, Luke; Sapkota, Gopal
    University of Dundee Advances in targeted degradation of endogenous proteins Roth, Sascha; Fulcher, Luke; Sapkota, Gopal Published in: Cellular and Molecular Life Sciences DOI: 10.1007/s00018-019-03112-6 Publication date: 2019 Licence: CC BY Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Roth, S., Fulcher, L., & Sapkota, G. (2019). Advances in targeted degradation of endogenous proteins. Cellular and Molecular Life Sciences, 76(14), 2761-2777. https://doi.org/10.1007/s00018-019-03112-6 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 29. Sep. 2021 Cellular and Molecular Life Sciences https://doi.org/10.1007/s00018-019-03112-6 Cellular andMolecular Life Sciences REVIEW Advances in targeted degradation of endogenous proteins Sascha Röth1 · Luke J. Fulcher1 · Gopal P. Sapkota1 Received: 11 January 2019 / Revised: 23 March 2019 / Accepted: 16 April 2019 © The Author(s) 2019 Abstract Protein silencing is often employed as a means to aid investigations in protein function and is increasingly desired as a thera- peutic approach.
    [Show full text]
  • PEGS Europe 2014 in Lisbon James West, Ph.D., Research Fellow, Protein Engineering, Cytomx Therapeutics, Inc
    Register by 10 October and Save up to €220 COVER Sixth Annual Final Agenda SHORT COURSES CONFERENCE AT-A-GLANCE STREAM 1: ANTIBODY ENGINEERING PHAGE & YEAST DISPLAY CONSTRUCTS & SCAFFOLDS 3-7 NOVEMBER 2014 | MARRIOTT HOTEL | LISBON, PORTUGAL CANCER BIOTHERAPEUTICS PLENARY KEYNOTES STREAM 2: The Impact of the New Regulatory Guidance Current Progress with Armed BIOLOGICS DEVELOPMENT Landscape on the Validation of the Manufacturing Antibody Products Two Consecutive Process and the Characterisation of Starting Dario Neri, Ph.D., ETH Zurich Materials, Drug Substance and Drug Product OPTIMISATION & DEVELOPMENT Years of Steffen Gross, Ph.D., Paul-Ehrlich-Institut 40% Growth in AGGREGATES & PARTICLES KEYNOTE PRESENTERS Attendance! Roslyn Bill, Aston University Birmingham Ewa Marszal, U.S. Food & Drug Administration CHARACTERISING BIOTHERAPEUTICS H. Kaspar Binz, Molecular Partners AG John McCafferty, IONTAS Ltd. STREAM 3: Klaus Bosslet, Roche Pharmaceuticals, Penzberg Jonas Schaefer, University of Zurich PROTEIN ENGINEERING Rakesh Dixit, MedImmune LLC Ralf Schumacher, Roche Penzberg & pRED Stefan Dübel, Technische Universität Braunschweig Janine Schuurman, Genmab DIFFICULT TO EXPRESS PROTEINS Jacques Dumas, sanofi Florian Wurm, Swiss Federal Institute of Technology Lausanne (EPFL) David James, University of Sheffield OPTIMISING PROTEIN EXPRESSION ANTIBODY EXPRESSION HOTEL & TRAVEL INFO SPONSORSHIP & EXHIBIT PEGSummitEurope.com ORGANIZED BY: PREMIER SPONSORS: 1 Short Courses* Maximize Your Productivity Maximize your educational and networking opportunities while in Lisbon by adding a short course. Continued training and education are essential for staying competitive. COVER These interactive short courses are a great introduction for those new to a particular discipline or as a refresher for those who want to brush up on their knowledge or expand their horizons. Attendance is limited to ensure an interactive environment.
    [Show full text]
  • Engineered Extracellular Vesicles/Exosomes As a New Tool Against Neurodegenerative Diseases
    pharmaceutics Review Engineered Extracellular Vesicles/Exosomes as a New Tool against Neurodegenerative Diseases Flavia Ferrantelli *, Chiara Chiozzini, Patrizia Leone, Francesco Manfredi and Maurizio Federico * National Center for Global Health, Istituto Superiore Di Sanità (ISS), 00161 Rome, Italy; [email protected] (C.C.); [email protected] (P.L.); [email protected] (F.M.) * Correspondence: fl[email protected] (F.F.); [email protected] (M.F.); Tel.: +39-06-4990-3212 (F.F.); +39-06-4990-3605 (M.F.) Received: 14 May 2020; Accepted: 6 June 2020; Published: 9 June 2020 Abstract: Neurodegenerative diseases are commonly generated by intracellular accumulation of misfolded/aggregated mutated proteins. These abnormal protein aggregates impair the functions of mitochondria and induce oxidative stress, thereby resulting in neuronal cell death. In turn, neuronal damage induces chronic inflammation and neurodegeneration. Thus, reducing/eliminating these abnormal protein aggregates is a priority for any anti-neurodegenerative therapeutic approach. Although several antibodies against mutated neuronal proteins have been already developed, how to efficiently deliver them inside the target cells remains an unmet issue. Extracellular vesicles/exosomes incorporating intrabodies against the pathogenic products would be a tool for innovative therapeutic approaches. In this review/perspective article, we identify and describe the major molecular targets associated with neurodegenerative diseases, as well as the antibodies already developed against them. Finally, we propose a novel targeting strategy based on the endogenous engineering of extracellular vesicles/exosomes constitutively released by cells of the central nervous system. Keywords: neurodegenerative disease therapy; extracellular vesicles/exosomes; intrabodies 1. Introduction Several neurodegenerative diseases (NDs) arise from cell degeneration induced by the accumulation of misfolded/mutated proteins.
    [Show full text]
  • Intrabodies to Their Antigen Targets
    Inducible strategies for controlling binding of intrabodies to their antigen targets Technical Journal Club 28.04.2020 Francesca Catto Paper #1 Paper #2 What are intrabodies? • Intrabodies are small format antibodies that function inside of cells - Delivered as DNA packaged in a virus - Intrabody DNA does not incorporate into cell DNA Introduction Intrabodies Produced in the cell, and bind an antigen within the same cell. Antibodies are soluble proteins that are normally found circulating the body within the serum. They are synthesized in the endoplasmic reticulum (ER) of B cells as separate heavy chain and light chains, which are then linked by disulfide bonds in the mature Ig. However, the full-length antibody is not functional in the cytosol, prior to secretion, due to its reducing conditions, which affect protein folding and the intramolecular disulfide bonds that are required to maintain the antibody’s conformation and stability. Variable regions characterize an antibody with its exceptional target specificity. --> it is possible to use antibody fragments incorporating the specificity-providing regions within a single-chain variable fragment (scFv), which can be further engineered for cytosolic stability, to target intracellular antigens Fig1 Introduction The variable (V) region domain can be used by itself to form a domain antibody or Dab. These can be engineered from conventional human Igs. Fig2a Introduction The variable (V) region domain can be used by itself to form a domain antibody or Dab. These can be engineered from conventional human Igs. Fig2a Single heavy chain V regions or light chain V regions can be expressed inside cells. These are referred to as intracellular domain antibodies, which do not require intramolecular disulfide bonds for stability, hence representing the smallest format of the antibody that retains target specificity while minimizing size.
    [Show full text]