Basic Financial Econometrics

Total Page:16

File Type:pdf, Size:1020Kb

Basic Financial Econometrics Basic Financial Econometrics Alois Geyer Vienna University of Economics and Business [email protected] http://www.wu.ac.at/~geyer this version: June 24, 2021 preliminary and incomplete c Alois Geyer 2021 { Some rights reserved. This document is subject to the following Creative-Commons-License: http://creativecommons.org/licenses/by-nc-nd/2.0/at/deed.en US Contents 1 Financial Regression Analysis1 1.1 Regression analysis................................1 1.1.1 Least squares estimation.........................2 1.1.2 Implications................................3 1.1.3 Interpretation...............................4 1.2 Finite sample properties of least squares estimates..............6 1.2.1 Assumptions...............................8 1.2.2 Properties................................. 11 1.2.3 Testing hypothesis............................ 13 1.2.4 Example 6: CAPM, beta-factors and multi-factor models...... 15 1.2.5 Example 7: Interest rate parity..................... 19 1.2.6 Prediction................................. 21 1.3 Large sample properties of least squares estimates.............. 22 1.3.1 Consistency................................ 23 1.3.2 Asymptotic normality.......................... 25 1.3.3 Time series data............................. 26 1.4 Maximum likelihood estimation......................... 28 1.5 LM, LR and Wald tests............................. 31 1.6 Specifications................................... 33 1.6.1 Log and other transformations..................... 33 1.6.2 Dummy variables............................. 34 1.6.3 Interactions................................ 35 1.6.4 Difference-in-differences......................... 36 1.6.5 Example 11: Hedonic price functions.................. 37 1.6.6 Example 12: House price changes induced by siting decisions.... 38 1.6.7 Omitted and irrelevant regressors.................... 39 1.6.8 Selection of regressors.......................... 41 1.7 Regression diagnostics.............................. 43 1.7.1 Non-normality.............................. 43 1.7.2 Heteroscedasticity............................ 44 1.7.3 Autocorrelation.............................. 46 1.8 Generalized least squares............................ 51 1.8.1 Heteroscedasticity............................ 51 1.8.2 Autocorrelation.............................. 52 1.8.3 Example 19: Long-horizon return regressions............. 55 1.9 Endogeneity and instrumental variable estimation............... 57 1.9.1 Endogeneity................................ 57 1.9.2 Instrumental variable estimation.................... 59 1.9.3 Selection of instruments and tests................... 62 1.9.4 Example 21: Consumption based asset pricing............ 65 1.10 Generalized method of moments........................ 69 1.10.1 OLS, IV and GMM........................... 71 1.10.2 Asset pricing and GMM......................... 72 1.10.3 Estimation and inference........................ 74 1.10.4 Example 24: Models for the short-term interest rate......... 77 1.11 Models with binary dependent variables.................... 78 1.12 Sample selection................................. 82 1.13 Duration models................................. 84 2 Time Series Analysis 87 2.1 Financial time series............................... 87 2.1.1 Descriptive statistics of returns..................... 88 2.1.2 Return distributions........................... 91 2.1.3 Abnormal returns and event studies.................. 94 2.1.4 Autocorrelation analysis of financial returns.............. 97 2.1.5 Stochastic process terminology..................... 100 2.2 ARMA models.................................. 101 2.2.1 AR models................................ 101 2.2.2 MA models................................ 104 2.2.3 ARMA models.............................. 105 2.2.4 Estimating ARMA models........................ 106 2.2.5 Diagnostic checking of ARMA models................. 107 2.2.6 Example 35: ARMA models for FTSE and AMEX returns..... 108 2.2.7 Forecasting with ARMA models.................... 110 2.2.8 Properties of ARMA forecast errors.................. 112 2.3 Non-stationary models.............................. 115 2.3.1 Random-walk and ARIMA models................... 115 2.3.2 Forecasting prices from returns..................... 118 2.3.3 Unit-root tests.............................. 119 2.4 Diffusion models in discrete time........................ 124 2.4.1 Discrete time approximation...................... 126 2.4.2 Estimating parameters.......................... 126 2.4.3 Probability statements about future prices............... 129 2.5 GARCH models.................................. 131 2.5.1 Estimating and diagnostic checking of GARCH models........ 133 2.5.2 Example 49: ARMA-GARCH models for IBM and FTSE returns.. 133 2.5.3 Forecasting with GARCH models.................... 135 2.5.4 Special GARCH models......................... 136 3 Vector time series models 138 3.1 Vector-autoregressive models.......................... 138 3.1.1 Formulation of VAR models....................... 138 3.1.2 Estimating and forecasting VAR models................ 140 3.2 Cointegration and error correction models................... 143 3.2.1 Cointegration............................... 143 3.2.2 Error correction model.......................... 143 3.2.3 Example 53: The expectation hypothesis of the term structure... 145 3.2.4 The Engle-Granger procedure...................... 146 3.2.5 The Johansen procedure......................... 150 3.2.6 Cointegration among more than two series............... 155 3.3 State space modeling and the Kalman filter.................. 157 3.3.1 The state space formulation....................... 157 3.3.2 The Kalman filter............................ 158 3.3.3 Example 60: The Cox-Ingersoll-Ross model of the term structure.. 159 Bibliography 162 I am grateful to many PhD students of the VGSF program, as well as doctoral and master students at WU for valuable comments which have helped to improve these lecture notes. 1.1 Regression analysis 1 1 Financial Regression Analysis 1.1 Regression analysis We start by reviewing key aspects of regression analysis. Its purpose is to relate a depen- dent variable y to one or more variables X which are assumed to affect y. The relation is specified in terms of a systematic part which determines the expected value of y and a random part . For example, the systematic part could be a (theoretically derived) valuation relationship. The random part represents unsystematic deviations between ob- servations and expectations (e.g. deviations from equilibrium). The relation between y and X depends on unknown parameters β which are used in the function that relates X to the expectation of y. Assumption AL (linearity): We consider the linear regression equation y = Xβ + : 0 y is the n×1 vector (y1; : : : ; yn) of observations of the dependent (or endogenous) vari- able, is the vector of errors (also called residuals, disturbances, innovations or shocks), β is the K×1 vector of parameters, and the n×K matrix X of regressors (also called explanatory variables or covariates) is defined as follows: 0 1 1 x11 x12 ··· x1k B C B 1 x21 x22 ··· x2k C X = B . C : B . .. C @ . A 1 xn1 xn2 ··· xnk 0 k is the number of regressors and K=k+1 is the dimension of β=(β0; β1; : : : ; βk) , where β0 is the constant term or intercept. A single row i of X will be denoted by the K×1 column vector xi. For a single observation the model equation is written as 0 yi = xiβ + i (i = 1; : : : ; n): We will frequently (mainly in the context of model specification and interpretation) use formulations like y = β0 + β1x1 + ··· + βkxk + , where the symbols y, xi and represent the variables in question. It is understood that such equations also hold for a single observation. 1.1 Regression analysis 2 1.1.1 Least squares estimation A main purpose of regression analysis is to draw conclusions about the population using a sample. The regression equation y=Xβ+ is assumed to hold in the population. The sample estimate of β is denoted by b and the estimate of by e. According to the least squares (LS) criterion, b should be chosen such that the sum of squared errors SSE is minimized n n X 2 X 0 2 0 SSE(b) = ei = (yi − xib) = (y − Xb) (y − Xb) −! min : i=1 i=1 A necessary condition for a minimum is derived from SSE(b) = y0y − 2b0X0y + b0X0Xb; and is given by @SSE(b) = 0 : −2X0y + 2X0Xb = 0: @b Assumption AR (rank): We assume that X has full rank equal to K (i.e. the columns of X are linearly independent). If X has full rank, X0X is positive definite and the ordinary least squares (OLS) estimates b are given by b = (X0X)−1X0y: (1) The solution is a minimum since @2SSE(b) = 2X0X @b2 is positive definite by assumption AR. It is useful to express X0y and X0X in terms of the sums n n 0 X 0 X 0 X y = xiyi X X = xixi i=1 i=1 to point out that the estimate is related to the covariance between the dependent variable and the regressors, and the covariance among regressors. In the special case of the simple regression model y=b0+b1x+e with a single regressor the estimates b1 and b0 are given by syx sy b1 = 2 = ryx b0 =y ¯ − b1x;¯ sx sx where syx (ryx) is the sample covariance (correlation) between y and x, sy and sx are the sample standard deviations of y and x, andy ¯ andx ¯ are their sample means. 1.1 Regression analysis 3 1.1.2 Implications By the first order condition the OLS estimates satisfy the normal equation (X0X)b − X0y = −X0(y − Xb) = −X0e = 0; (2) which implies that each column of X is uncorrelated with (orthogonal to) e. If the first column of X is a column
Recommended publications
  • Financial Econometrics Lecture Notes
    Financial Econometrics Lecture Notes Professor Doron Avramov The Hebrew University of Jerusalem & Chinese University of Hong Kong Introduction: Why do we need a course in Financial Econometrics? 2 Professor Doron Avramov, Financial Econometrics Syllabus: Motivation The past few decades have been characterized by an extraordinary growth in the use of quantitative methods in the analysis of various asset classes; be it equities, fixed income securities, commodities, and derivatives. In addition, financial economists have routinely been using advanced mathematical, statistical, and econometric techniques in a host of applications including investment decisions, risk management, volatility modeling, interest rate modeling, and the list goes on. 3 Professor Doron Avramov, Financial Econometrics Syllabus: Objectives This course attempts to provide a fairly deep understanding of such techniques. The purpose is twofold, to provide research tools in financial economics and comprehend investment designs employed by practitioners. The course is intended for advanced master and PhD level students in finance and economics. 4 Professor Doron Avramov, Financial Econometrics Syllabus: Prerequisite I will assume prior exposure to matrix algebra, distribution theory, Ordinary Least Squares, Maximum Likelihood Estimation, Method of Moments, and the Delta Method. I will also assume you have some skills in computer programing beyond Excel. MATLAB and R are the most recommended for this course. OCTAVE could be used as well, as it is a free software, and is practically identical to MATLAB when considering the scope of the course. If you desire to use STATA, SAS, or other comparable tools, please consult with the TA. 5 Professor Doron Avramov, Financial Econometrics Syllabus: Grade Components Assignments (36%): there will be two problem sets during the term.
    [Show full text]
  • Recent Developments in Macro-Econometric Modeling: Theory and Applications
    econometrics Editorial Recent Developments in Macro-Econometric Modeling: Theory and Applications Gilles Dufrénot 1,*, Fredj Jawadi 2,* and Alexander Mihailov 3,* ID 1 Faculty of Economics and Management, Aix-Marseille School of Economics, 13205 Marseille, France 2 Department of Finance, University of Evry-Paris Saclay, 2 rue du Facteur Cheval, 91025 Évry, France 3 Department of Economics, University of Reading, Whiteknights, Reading RG6 6AA, UK * Correspondence: [email protected] (G.D.); [email protected] (F.J.); [email protected] (A.M.) Received: 6 February 2018; Accepted: 2 May 2018; Published: 14 May 2018 Developments in macro-econometrics have been evolving since the aftermath of the Second World War. Essentially, macro-econometrics benefited from the development of mathematical, statistical, and econometric tools. Such a research programme has attained a meaningful success as the methods of macro-econometrics have been used widely over about half a century now to check the implications of economic theories, to model macroeconomic relationships, to forecast business cycles, and to help policymakers to make appropriate decisions. However, despite this progress, important methodological and interpretative questions in macro-econometrics remain (Stock 2001). Additionally, the recent global financial crisis of 2008–2009 and the subsequent deep and long economic recession signaled the end of the “great moderation” (early 1990s–2007) and suggested some limitations of the widely employed and by then dominant macro-econometric framework. One of these deficiencies was that current macroeconomic models have failed to predict this huge economic downturn, perhaps because they did not take into account indicators of contagion, systemic risk, and the financial cycle, or the inter-connectedness of asset markets, in particular housing, with the macro-economy.
    [Show full text]
  • Research Proposal
    Effects of Contract Farming on Productivity and Income of Farmers in Production of Tea in Phu Tho Province, Vietnam Anh Tru Nguyen MSc (University of the Philippines Los Baños) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Management Newcastle Business School Faculty of Business and Law The University of Newcastle Australia February 2019 Statement of Originality I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo. Anh Tru Nguyen Date: 19/02/2019 i Acknowledgement of Authorship I hereby certify that the work embodied in this thesis contains a published paper work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication work. Anh Tru Nguyen Date: 19/02/2019 ii Publications This thesis comprises the following published article and conference papers. I warrant that I have obtained, where necessary, permission from the copyright owners to use any third party copyright material reproduced in the thesis, or to use any of my own published work in which the copyright is held by another party.
    [Show full text]
  • The Johansen Tests for Cointegration
    The Johansen Tests for Cointegration Gerald P. Dwyer April 2015 Time series can be cointegrated in various ways, with details such as trends assuming some importance because asymptotic distributions depend on the presence or lack of such terms. I will focus on the simple case of one unit root in each of the variables with no constant terms or other deterministic terms. These notes are a quick summary of some results without derivations. Cointegration and Eigenvalues The Johansen test can be seen as a multivariate generalization of the augmented Dickey- Fuller test. The generalization is the examination of linear combinations of variables for unit roots. The Johansen test and estimation strategy { maximum likelihood { makes it possible to estimate all cointegrating vectors when there are more than two variables.1 If there are three variables each with unit roots, there are at most two cointegrating vectors. More generally, if there are n variables which all have unit roots, there are at most n − 1 cointegrating vectors. The Johansen test provides estimates of all cointegrating vectors. Just as for the Dickey-Fuller test, the existence of unit roots implies that standard asymptotic distributions do not apply. Slight digression for an assertion: If there are n variables and there are n cointegrating vectors, then the variables do not have unit roots. Why? Because the cointegrating vectors 1Results generally go through for quasi-maximum likelihood estimation. 1 can be written as scalar multiples of each of the variables alone, which implies
    [Show full text]
  • Advanced Financial Econometrics
    MFE 2013-14 Trinity Term | Advanced Financial Econometrics Advanced Financial Econometrics Kevin Sheppard Department of Economics Oxford-Man Institute of Quantitative Finance Course Site: http://www.kevinsheppard.com/Advanced_Econometrics Weblearn Site: https://weblearn.ox.ac.uk/portal/site/socsci/sbs/mfe2012_2013/ttafe 1 Aims, objectives and intended learning outcomes 1.1 Basic aims This course aims to extend the core tools of Financial Econometrics I & II to some advanced forecasting problems. The first component covers techniques for working with many forecasting models – often referred to as data snoop- ing. The second component covers techniques for handling many predictors – including the case where the number of predictors is much larger than the number of data points available. 1.2 Specific objectives Part I (Week 1 – 4) Revisiting the bootstrap and extensions appropriate for time-series data • Technical trading rules and large number of forecasts • Formalized data-snooping robust inference • False-discovery rates • Detecting sets of models that are statistically indistinguishable • Part I (Week 5 – 8) Dynamic Factor Models and Principal Component Analysis • The Kalman Filter and Expectations-Maximization Algorithm • Partial Least Squares and the 3-pass Regression Filter • Regularized Reduced Rank Regression • 1.3 Intended learning outcomes Following class attendance, successful completion of assigned readings, assignments, both theoretical and empiri- cal, and recommended private study, students should be able to Detect superior performance using methods that are robust to data snooping • Produce and evaluate forecasts in for macro-financial time series in data-rich environments • 1 2 Teaching resources 2.1 Lecturing Lectures are provided by Kevin Sheppard. Kevin Sheppard is an Associate Professor and a fellow at Keble College.
    [Show full text]
  • A Cointegrated VAR and Granger Causality Analysis F
    CBN Journal of Applied Statistics Vol. 2 No.2 15 Foreign Private Investment and Economic Growth in Nigeria: A Cointegrated VAR and Granger causality analysis F. Z. Abdullahi1, S. Ladan1 and Haruna R. Bakari2 This research uses a cointegration VAR model to study the contemporaneous long-run dynamics of the impact of Foreign Private Investment (FPI), Interest Rate (INR) and Inflation rate (IFR) on Growth Domestic Products (GDP) in Nigeria for the period January 1970 to December 2009. The Unit Root Test suggests that all the variables are integrated of order 1. The VAR model was appropriately identified using AIC information criteria and the VECM model has exactly one cointegration relation. The study further investigates the causal relationship using the Granger causality analysis of VECM which indicates a uni-directional causality relationship between GDP and FDI at 5% which is in line with other studies. The result of Granger causality analysis also shows that some of the variables are Ganger causal of one another; the null hypothesis of non-Granger causality is rejected at 5% level of significance for these variables. Keywords: Cointegration, VAR, Granger Causality, FPI, Economic Growth JEL Classification: G32, G24 1.0 Introduction The use of Vector Autoregressive Models (VAR) and Vector Error Correction Models (VECM) for analyzing dynamic relationships among financial variables has become common in the literature, Granger (1981), Engle and Granger (1987), MacDonald and Power (1995) and Barnhill, et al. (2000). The popularity of these models has been associated with the realization that relationships among financial variables are so complex that traditional time-series models have failed to fully capture.
    [Show full text]
  • An Introduction to Financial Econometrics
    An introduction to financial econometrics Jianqing Fan Department of Operation Research and Financial Engineering Princeton University Princeton, NJ 08544 November 14, 2004 What is the financial econometrics? This simple question does not have a simple answer. The boundary of such an interdisciplinary area is always moot and any attempt to give a formal definition is unlikely to be successful. Broadly speaking, financial econometrics is to study quantitative problems arising from finance. It uses sta- tistical techniques and economic theory to address a variety of problems from finance. These include building financial models, estimation and inferences of financial models, volatility estimation, risk management, testing financial economics theory, capital asset pricing, derivative pricing, portfolio allocation, risk-adjusted returns, simulating financial systems, hedging strategies, among others. Technological invention and trade globalization have brought us into a new era of financial markets. Over the last three decades, enormous number of new financial products have been created to meet customers’ demands. For example, to reduce the impact of the fluctuations of currency exchange rates on a firm’s finance, which makes its profit more predictable and competitive, a multinational corporation may decide to buy the options on the future of foreign exchanges; to reduce the risk of price fluctuations of a commodity (e.g. lumbers, corns, soybeans), a farmer may enter into the future contracts of the commodity; to reduce the risk of weather exposures, amuse parks (too hot or too cold reduces the number of visitors) and energy companies may decide to purchase the financial derivatives based on the temperature. An important milestone is that in the year 1973, the world’s first options exchange opened in Chicago.
    [Show full text]
  • Testing Linear Restrictions on Cointegration Vectors: Sizes and Powers of Wald Tests in Finite Samples
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Haug, Alfred A. Working Paper Testing linear restrictions on cointegration vectors: Sizes and powers of Wald tests in finite samples Technical Report, No. 1999,04 Provided in Cooperation with: Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475), University of Dortmund Suggested Citation: Haug, Alfred A. (1999) : Testing linear restrictions on cointegration vectors: Sizes and powers of Wald tests in finite samples, Technical Report, No. 1999,04, Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund This Version is available at: http://hdl.handle.net/10419/77134 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung
    [Show full text]
  • Linear Cointegration of Nonlinear Time Series with an Application to Interest Rate Dynamics
    Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C. Linear Cointegration of Nonlinear Time Series with an Application to Interest Rate Dynamics Barry E. Jones and Travis D. Nesmith 2007-03 NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors. References in publications to the Finance and Economics Discussion Series (other than acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers. Linear Cointegration of Nonlinear Time Series with an Application to Interest Rate Dynamics Barry E. Jones Binghamton University Travis D. Nesmith Board of Governors of the Federal Reserve System November 29, 2006 Abstract We derive a denition of linear cointegration for nonlinear stochastic processes using a martingale representation theorem. The result shows that stationary linear cointegrations can exhibit nonlinear dynamics, in contrast with the normal assump- tion of linearity. We propose a sequential nonparametric method to test rst for cointegration and second for nonlinear dynamics in the cointegrated system. We apply this method to weekly US interest rates constructed using a multirate lter rather than averaging. The Treasury Bill, Commercial Paper and Federal Funds rates are cointegrated, with two cointegrating vectors. Both cointegrations behave nonlinearly. Consequently, linear models will not fully replicate the dynamics of monetary policy transmission. JEL Classication: C14; C32; C51; C82; E4 Keywords: cointegration; nonlinearity; interest rates; nonparametric estimation Corresponding author: 20th and C Sts., NW, Mail Stop 188, Washington, DC 20551 E-mail: [email protected] Melvin Hinich provided technical advice on his bispectrum computer program.
    [Show full text]
  • An Econometric Model of the Yield Curve with Macroeconomic Jump Effects
    An Econometric Model of the Yield Curve with Macroeconomic Jump Effects Monika Piazzesi∗ UCLA and NBER First Draft: October 15, 1999 This Draft: April 10, 2001 Abstract This paper develops an arbitrage-free time-series model of yields in continuous time that incorporates central bank policy. Policy-related events, such as FOMC meetings and releases of macroeconomic news the Fed cares about, are modeled as jumps. The model introduces a class of linear-quadratic jump-diffusions as state variables, which allows for a wide variety of jump types but still leads to tractable solutions for bond prices. I estimate a version of this model with U.S. interest rates, the Federal Reserve's target rate, and key macroeconomic aggregates. The estimated model improves bond pricing, especially at short maturities. The \snake-shape" of the volatility curve is linked to monetary policy inertia. A new monetary policy shock series is obtained by assuming that the Fed reacts to information available right before the FOMC meeting. According to the estimated policy rule, the Fed is mainly reacting to information contained in the yield-curve. Surprises in analyst forecasts turn out to be merely temporary components of macro variables, so that the \hump-shaped" yield response to these surprises is not consistent with a Taylor-type policy rule. ∗I am still looking for words that express my gratitude to Darrell Duffie. I would like to thank Andrew Ang, Michael Brandt, John Cochrane, Heber Farnsworth, Silverio Foresi, Lars Hansen, Ken Judd, Thomas Sargent, Ken Singleton, John Shoven, John Taylor, and Harald Uhlig for helpful suggestions; and Martin Schneider for extensive discussions.
    [Show full text]
  • Econometric Theory
    ECONOMETRIC THEORY MODULE – I Lecture - 1 Introduction to Econometrics Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 2 Econometrics deals with the measurement of economic relationships. It is an integration of economic theories, mathematical economics and statistics with an objective to provide numerical values to the parameters of economic relationships. The relationships of economic theories are usually expressed in mathematical forms and combined with empirical economics. The econometrics methods are used to obtain the values of parameters which are essentially the coefficients of mathematical form of the economic relationships. The statistical methods which help in explaining the economic phenomenon are adapted as econometric methods. The econometric relationships depict the random behaviour of economic relationships which are generally not considered in economics and mathematical formulations. It may be pointed out that the econometric methods can be used in other areas like engineering sciences, biological sciences, medical sciences, geosciences, agricultural sciences etc. In simple words, whenever there is a need of finding the stochastic relationship in mathematical format, the econometric methods and tools help. The econometric tools are helpful in explaining the relationships among variables. 3 Econometric models A model is a simplified representation of a real world process. It should be representative in the sense that it should contain the salient features of the phenomena under study. In general, one of the objectives in modeling is to have a simple model to explain a complex phenomenon. Such an objective may sometimes lead to oversimplified model and sometimes the assumptions made are unrealistic. In practice, generally all the variables which the experimenter thinks are relevant to explain the phenomenon are included in the model.
    [Show full text]
  • What Macroeconomists Should Know About Unit Roots
    This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research Volume Title: NBER Macroeconomics Annual 1991, Volume 6 Volume Author/Editor: Olivier Jean Blanchard and Stanley Fischer, editors Volume Publisher: MIT Press Volume ISBN: 0-262-02335-0 Volume URL: http://www.nber.org/books/blan91-1 Conference Date: March 8-9, 1991 Publication Date: January 1991 Chapter Title: Pitfalls and Opportunities: What Macroeconomists Should Know About Unit Roots Chapter Author: John Y. Campbell, Pierre Perron Chapter URL: http://www.nber.org/chapters/c10983 Chapter pages in book: (p. 141 - 220) JohnY. Campbelland PierrePerron PRINCETONUNIVERSITY AND NBER/PRINCETONUNIVERSITY AND CRDE Pitfalls and Opportunities:What MacroeconomistsShould Know about Unit Roots* 1. Introduction The field of macroeconomics has its share of econometric pitfalls for the unwary applied researcher. During the last decade, macroeconomists have become aware of a new set of econometric difficulties that arise when one or more variables of interest may have unit roots in their time series representations. Standard asymptotic distribution theory often does not apply to regressions involving such variables, and inference can go seriously astray if this is ignored. In this paper we survey unit root econometrics in an attempt to offer the applied macroeconomist some reliable guidelines. Unit roots can create opportunities as well as problems for applied work. In some unit root regressions, coefficient estimates converge to the true parameter values at a faster rate than they do in standard regressions with stationary variables. In large samples, coefficient estimates with this property are robust to many types of misspecification, and they can be treated as known in subsequent empiri- cal exercises.
    [Show full text]