Orally Administered Glucosylceramide Improves the Skin Barrier Function by Upregulating Genes Associated with the Tight Junction and Cornified Envelope Formation

Total Page:16

File Type:pdf, Size:1020Kb

Orally Administered Glucosylceramide Improves the Skin Barrier Function by Upregulating Genes Associated with the Tight Junction and Cornified Envelope Formation 110215 (251) Biosci. Biotechnol. Biochem., 75 (8), 110215-1–8, 2011 Orally Administered Glucosylceramide Improves the Skin Barrier Function by Upregulating Genes Associated with the Tight Junction and Cornified Envelope Formation y Ritsuro IDETA, Tomohiro SAKUTA, Yusuke NAKANO, and Taro UCHIYAMA Shiseido Functional Food Research and Development Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama 236-8643, Japan Received March 18, 2011; Accepted May 9, 2011; Online Publication, August 7, 2011 [doi:10.1271/bbb.110215] Dietary glucosylceramide improves the skin barrier mammalian skin barrier function through their role as function. We used a microarray system to analyze the intracellular lipids.6) The skin barrier is essential for mRNA expression in SDS-treated dorsal skin of the protecting against physical stimuli, thermal challenge, hairless mouse to elucidate the molecular mechanisms ultraviolet light (UV), chemical substances and micro- involved. The transepidermal water loss of mouse skin organisms, as well as for preventing water loss.7) The was increased by the SDS treatment, this increase being barrier function is mainly localized in the stratum significantly reduced by a prior oral administration of corneum (SC) which is formed in the outermost layer of glucosylceramides. The microarray-evaluated mRNA the epidermis and consists of the cornified envelope expressionAdvance ratio showed a statistically significant View in- (CE) and intercellular multilamellar lipids. CE forms crease in the expression of genes related to the cornified a highly durable and flexible barrier8) comprising a envelope and tight junction formation when compared 15-nm-thick structure composed of such insoluble with all genes in the glucosylceramide-fed/SDS-treated proteins as involucrin, loricrin, and small proline-rich mouse skin. We then examined the contribution of proteins that are covalently cross-linked by transgluta- glucosylceramide metabolites to the tight junction minases (TGases).9) SC intercellular lipids, which con- formation of cultured keratinocytes. The SDS treatment sist mainly of ceramide and such other components as of cultured keratinocytes significantly decreased the cholesterol esters and free fatty acids, are also known to transepidermal electrical resistance, this decrease being influence the skin barrier function. Maturation of CE is significantly ameliorated in the presence of sphingosine essential for a proper barrier function,10) and it is known or phytosphingosine, the major metabolites of glucosyl- that a decrease ofProofs ceramide causes impairment of the ceramide. These results suggest that an oral adminis- barrier function in human skin.11) tration of glucosylceramide improved the skin barrier Tight junctions (TJ)s in the granular layer of the function by up-regulating genes associated with both the epidermis also contribute to the skin barrier func- cornified envelope and tight junction formation. tion12,13) by controlling the paracellular permeability of ions and water, as well as larger molecules. TJ is formed Key words: glucosylceramide; sphingoid base; cornified by a variety of proteins, including structural trans- envelope; tight junction; skin barrier membrane components (claudins (Cldns), occludin, junctional adhesion molecules (JAMs) and tricellulin) Amorphophallus konjac (A. konjac) is a perennial and scaffolding proteins for undercoating TJ and for the plant native to eastern Asia (from Japan and China, assembly of transmembrane proteins (ZO-1, 2, 3, Mupp- south to Indonesia). It forms a large corm which 1, Magi-1 and so on),14–16) as well as some protein contains around 40% glucomannan gum,1) and is used complexes which regulate the set-up of the polarity, to prepare flour and konjac jelly. Konjac jelly is a aPKC/Par3/Par6 complex and Crb3/Pals1/Patj com- popular health food in Japan, because it has almost no plex.16,17) TJ and TJ proteins form zipper-like structures calories, but is very high in fiber content. in epithelial cells which firmly fasten adjacent cells to A. konjac is also a rich source of glucosylceramides each other, but divide between the apical space and (GCs), which are structurally constituted by sphingoid basal space to control the paracellular passage of soluble bases, long-chain fatty acids and sugar moieties, and factors. TJ proteins in mammalian skin contribute to occur in animals, fungi and plants.2,3) GCs are essential various skin functions, including barrier formation, structural components of mammalian cell membranes polarity, gene expression, proliferation, differentiation, and are mostly found at the cell surface; they participate and vesicular transport.14) in such biological functions as immunomodulation4) and Interestingly, an oral intake of GC has been reported insulin resistance.5) They also serve to maintain the to improve the skin barrier function; for example, GC y To whom correspondence should be addressed. Fax: +81-45-788-7284; E-mail: [email protected] Abbreviations: AJ, adherens junction; aPKC, atypical protein kinase C; CE, cornified envelope; Cldn, claudin; Cy, cyanine; dNHEK, differentiated normal human epidermal keratinocytes; GC, glucosylceramide; GSEA, gene set enrichment analysis; JAM, junctional adhesion molecule; Magi, membrane-associated guanylate kinase; Mupp, multiple PDZ domain protein; NHEK, normal human epidermal keratinocytes; PAGE, parametric analysis of gene set enrichment; SC, stratum corneum; SD, standard deviation; Sprr, small proline-rich protein; TER, transepithelial electrical resistance; TEWL, transepidermal water loss; TGase, transglutaminase; UV, ultraviolet light; TJ, tight junction; ZO, zonula occludens 110215-2 R. IDETA et al. improved the recovery of SC flexibility and transepider- (Thermo Fisher Scientific, Waltham, MA, USA) and an Agilent mal water loss (TEWL) in acutely barrier-perturbed Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). mice.18) A konjac extract, which contains GC, has also 19) cRNA amplification and labeling. Total RNA was amplified and improved TEWL in healthy human subjects. labeled with Cyanine 5 (Cy5) and Cyanine 3 (Cy3) by using a Low We performed a microarray analysis in this study to RNA Input linear amplification kit (Agilent Technologies) according to evaluate mRNA expression in the SDS-treated (barrier- the manufacturer’s instructions. RNAs for each sample were individ- perturbed) skin of GC-fed and control-fed mice in order ually coupled to both Cy3 and Cy5 dyes so that a dye swap comparison to clarify the mechanism for the barrier-improving effect could be made. Briefly, 500 ng of total RNA was reverse-transcribed to of orally administered GC. We evaluated two sets of double-stranded cDNA by using a poly dT-T7 promoter primer and MMLV-RT enzyme. The cDNA products were used as templates for genes associated with CE formation and TJ formation in vitro transcription to generate fluorescent cRNA by using T7 RNA and function, and calculated their average induced polymerase and Cy5-labeled or Cy3-labeled CTP. Labeled cRNAs expression ratio by GC feeding against the average were purified by using Qiagen RNeasy mini spin columns and eluted expression ratio of all genes on the microarray. We also in nuclease-free water. The cRNA quantity and cyanine incorporation confirmed the contribution of GC metabolites to TJ were determined using the Nanodrop ND-1000 and Bioanalyzer formation by examining their effect on the transepithe- instruments. lial electrical resistance (TER) of normal cultured Hybridization of sample cRNAs and data processing. Two labeled human epidermal keratinocytes. cDNA samples, one from a GC-fed mouse and the other from a control-fed mouse, were combined. Each hybridization used 825 ng of Materials and Methods labeled cRNAs that were mixed, fragmented, and hybridized at 65 C for 17 h to an Agilent 4 Â 44 K Whole Mouse Genome microarray Materials. Normal human epidermal keratinocytes (NHEK) were (Agilent 14868). After washing, the microarray was scanned with an obtained from Kurabo Co. (Osaka, Japan). NHEKs were cultured in a Agilent DNA microarray scanner. Feature Extraction software version low-Ca2þ (0.15 mM Ca2þ) medium, HuMedia-KG2 (Kurabo). Cells at 9.1.3.1 (Agilent Technologies) was used to assess the fluorescent passage three were used in this study. hybridization signals and to normalize the signals by using linear AdvanceKonjac extracts containing various concentrations of ViewGC (12%, regression and a Lowess curve-fitting technique. The reproducibility 66% and 100%) were presented by Unitika Limited (Osaka, Japan) and and reliability of each microarray were assessed by using Quality suspended in 1% of tragacanth gum (Wako Pure Chemicals Industries, Control report data in Feature Extraction. Osaka, Japan) at respective final GC concentrations of 30, 165 and 250 mg/mL. Statistical analysis. The scanned data were analyzed by using Ò Sphingoid bases, sphingosine and phytosphingosine, were pur- Genespring microarray data processing software (Agilent Technol- chased from Avanti Polar Lipids (Alabaster, AL, USA). ogies). Normalized signals were processed after first eliminating the flagged signals. Since some genes have multiple probes on the Agilent platform, gene-level expression values were calculated by using the Animals. This study was approved by the ethics committee of ‘‘Gene-level experiment’’ function in Genespring. Expression values Shiseido Research Center in accordance with the guidelines of the below 200 were floored to 200.20) The processed signal values for the National Institute of Health.
Recommended publications
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • High Expression of PARD3 Predicts Poor Prognosis in Hepatocellular Carcinoma Songwei Li1, Jian Huang2, Fan Yang1, Haiping Zeng3, Yuyun Tong1 & Kejia Li2*
    www.nature.com/scientificreports OPEN High expression of PARD3 predicts poor prognosis in hepatocellular carcinoma Songwei Li1, Jian Huang2, Fan Yang1, Haiping Zeng3, Yuyun Tong1 & Kejia Li2* Hepatocellular carcinoma (HCC) is one of the most commonly cancers with poor prognosis and drug response. Identifying accurate therapeutic targets would facilitate precision treatment and prolong survival for HCC. In this study, we analyzed liver hepatocellular carcinoma (LIHC) RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), and identifed PARD3 as one of the most signifcantly diferentially expressed genes (DEGs). Then, we investigated the relationship between PARD3 and outcomes of HCC, and assessed predictive capacity. Moreover, we performed functional enrichment and immune infltration analysis to evaluate functional networks related to PARD3 in HCC and explore its role in tumor immunity. PARD3 expression levels in 371 HCC tissues were dramatically higher than those in 50 paired adjacent liver tissues (p < 0.001). High PARD3 expression was associated with poor clinicopathologic feathers, such as advanced pathologic stage (p = 0.002), vascular invasion (p = 0.012) and TP53 mutation (p = 0.009). Elevated PARD3 expression also correlated with lower overall survival (OS, HR = 2.08, 95% CI = 1.45–2.98, p < 0.001) and disease-specifc survival (DSS, HR = 2.00, 95% CI = 1.27–3.16, p = 0.003). 242 up-regulated and 71 down-regulated genes showed signifcant association with PARD3 expression, which were involved in genomic instability, response to metal ions, and metabolisms. PARD3 is involved in diverse immune infltration levels in HCC, especially negatively related to dendritic cells (DCs), cytotoxic cells, and plasmacytoid dendritic cells (pDCs).
    [Show full text]
  • A Cell Junctional Protein Network Associated with Connexin-26
    International Journal of Molecular Sciences Communication A Cell Junctional Protein Network Associated with Connexin-26 Ana C. Batissoco 1,2,* ID , Rodrigo Salazar-Silva 1, Jeanne Oiticica 2, Ricardo F. Bento 2 ID , Regina C. Mingroni-Netto 1 and Luciana A. Haddad 1 1 Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil; [email protected] (R.S.-S.); [email protected] (R.C.M.-N.); [email protected] (L.A.H.) 2 Laboratório de Otorrinolaringologia/LIM32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, 01246-903 São Paulo, Brazil; [email protected] (J.O.); [email protected] (R.F.B.) * Correspondence: [email protected]; Tel.: +55-11-30617166 Received: 17 July 2018; Accepted: 21 August 2018; Published: 27 August 2018 Abstract: GJB2 mutations are the leading cause of non-syndromic inherited hearing loss. GJB2 encodes connexin-26 (CX26), which is a connexin (CX) family protein expressed in cochlea, skin, liver, and brain, displaying short cytoplasmic N-termini and C-termini. We searched for CX26 C-terminus binding partners by affinity capture and identified 12 unique proteins associated with cell junctions or cytoskeleton (CGN, DAAM1, FLNB, GAPDH, HOMER2, MAP7, MAPRE2 (EB2), JUP, PTK2B, RAI14, TJP1, and VCL) by using mass spectrometry. We show that, similar to other CX family members, CX26 co-fractionates with TJP1, VCL, and EB2 (EB1 paralogue) as well as the membrane-associated protein ASS1. The adaptor protein CGN (cingulin) co-immuno-precipitates with CX26, ASS1, and TJP1.
    [Show full text]
  • Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function Regulation
    biomolecules Review Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function Regulation Randy E. Strauss 1,* and Robert G. Gourdie 2,3,4,* 1 Virginia Tech, Translational Biology Medicine and Health (TBMH) Program, Roanoke, VA 24016, USA 2 Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA 3 Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA 4 Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA * Correspondence: [email protected] (R.E.S.); [email protected] (R.G.G.) Received: 29 October 2020; Accepted: 7 December 2020; Published: 10 December 2020 Abstract: Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Original Article ZO-1 Associates with Α3 Integrin and Connexin43 in Trabecular Meshwork and Schlemm’S Canal Cells
    Int J Physiol Pathophysiol Pharmacol 2020;12(1):1-10 www.ijppp.org /ISSN:1944-8171/IJPPP0106262 Original Article ZO-1 associates with α3 integrin and connexin43 in trabecular meshwork and Schlemm’s canal cells Xinbo Li1, Ted S Acott1,3, James I Nagy2, Mary J Kelley1,4 1Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA; 2Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; 3Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA; 4Department of Integrative Bioscience, Oregon Health and Science University, Portland, Oregon, USA Received December 11, 2019; Accepted January 14, 2020; Epub February 25, 2020; Published February 28, 2020 Abstract: Cellular structures that perform essential homeostatic functions include tight junctions, gap junctions, desmosomes and adherens junctions. The aqueous humor, produced by the ciliary body, passes into the anterior chamber of the eye and is filtered by the trabecular meshwork (TM), a tiny tissue found in the angle of the eye. This tissue, along with Schlemm’s canal (SC) inner wall cells, is thought to control intraocular pressure (IOP) homeostasis for normal, optimal vision. The actin cytoskeleton of the tissue plays a regulatory role in maintaining IOP. One of the key risk factors for primary open angle glaucoma is persistent elevation of IOP, which compromises the optic nerve. The ZO-1 (Zonula Occludens-1), extracellular matrix protein integrins, and gap junction protein connexin43 (Cx43) are widely expressed in many different cell populations. Here, we investigated the localization and interactions of ZO-1, α3 integrin, β1 integrin, and Cx43 in cultured porcine TM and SC cells using RT-PCR, western immunoblot- ting and immunofluorescence labeling with confocal microscopy, along with co-immunoprecipitation.
    [Show full text]
  • Association Study Between Polymorphisms of the PARD3 Gene and Schizophrenia
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 3: 881-885, 2012 Association study between polymorphisms of the PARD3 gene and schizophrenia SU KANG KIM1*, JONG YOON LEE2*, HAE JEONG PARK1, JONG WOO KIM3 and JOO-HO CHUNG1 1Department of Pharmacology and Kohwang Medical Research Institute; 2School of Medicine, Kyung Hee University, Seoul 130-701; 3Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea Received December 13, 2011; Accepted January 20, 2012 DOI: 10.3892/etm.2012.496 Abstract. The aim of this study was to investigate whether Introduction par-3 partitioning defective 3 homolog (C. elegans) (PARD3) single nucleotide polymorphisms (SNPs) are associated with Schizophrenia is a severe, debilitating, psychiatric disorder. schizophrenia. A total of 204 Korean schizophrenic patients Although the exact etiology of schizophrenia is unknown, [117 male, 41.1±9.6 years (mean age ± SD); 87 female, twin, family and adoption studies have provided consistent 42.6±11.5] and 351 control subjects (170 male, 43.8±6.6 years; evidence that genetic factors play a major role in the pathogen- 181 female, 44.2±5.8) were enrolled. We genotyped nine esis of schizophrenia. SNPs of the PARD3 gene [rs7075263 (intron), rs10827392 In a recent study, the data showed that polymorphisms (intron), rs773970 (intron), rs2252655 (intron), rs10763984 of several genes affect gene expression or the function of (intron), rs3781128 (Ser889Ser), rs1936429 (intron), rs671228 the encoded protein in the human brain (1). Clinical, epide- (intron) and rs16935163 (intron)]. Genotypes of PARD3 poly- miological, neuroimaging and postmortem data suggest that morphisms were evaluated by direct sequencing.
    [Show full text]
  • ADHD) Gene Networks in Children of Both African American and European American Ancestry
    G C A T T A C G G C A T genes Article Rare Recurrent Variants in Noncoding Regions Impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene Networks in Children of both African American and European American Ancestry Yichuan Liu 1 , Xiao Chang 1, Hui-Qi Qu 1 , Lifeng Tian 1 , Joseph Glessner 1, Jingchun Qu 1, Dong Li 1, Haijun Qiu 1, Patrick Sleiman 1,2 and Hakon Hakonarson 1,2,3,* 1 Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; [email protected] (Y.L.); [email protected] (X.C.); [email protected] (H.-Q.Q.); [email protected] (L.T.); [email protected] (J.G.); [email protected] (J.Q.); [email protected] (D.L.); [email protected] (H.Q.); [email protected] (P.S.) 2 Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Department of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA * Correspondence: [email protected]; Tel.: +1-267-426-0088 Abstract: Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with poorly understood molecular mechanisms that results in significant impairment in children. In this study, we sought to assess the role of rare recurrent variants in non-European populations and outside of coding regions. We generated whole genome sequence (WGS) data on 875 individuals, Citation: Liu, Y.; Chang, X.; Qu, including 205 ADHD cases and 670 non-ADHD controls. The cases included 116 African Americans H.-Q.; Tian, L.; Glessner, J.; Qu, J.; Li, (AA) and 89 European Americans (EA), and the controls included 408 AA and 262 EA.
    [Show full text]
  • Tight Junction Protein 1 Is Regulated by Transforming Growth Factor-Β and Contributes to Cell Motility in NSCLC Cells
    BMB Rep. 2015; 48(2): 115-120 BMB www.bmbreports.org Reports Tight junction protein 1 is regulated by transforming growth factor-β and contributes to cell motility in NSCLC cells So Hee Lee1,3, A Rome Paek1, Kyungsil Yoon2, Seok Hyun Kim1, Soo Young Lee3 & Hye Jin You1,* 1Cancer Cell and Molecular Biology Branch, Div. of Cancer Biology, 2Lung Cancer Branch, Div. of Translational and Clinical Research I, National Cancer Center, Goyang 410-769, 3Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, Korea Tight junction protein 1 (TJP1), a component of tight junction, not fully understood how TGF-β signals in these pathways. In has been reported to play a role in protein networks as an advanced cancers, TGF-β displays a tumor-promoting effect by adaptor protein, and TJP1 expression is altered during tumor inducing an epithelial-mesenchymal transition (EMT), which development. Here, we found that TJP1 expression was in- enhances invasiveness and metastasis. Generally, EMT is char- creased at the RNA and protein levels in TGF-β-stimulated acterized by a loss of cell-cell adhesion and apical-basal polar- lung cancer cells, A549. SB431542, a type-I TGF-β receptor ity and a gain in motility (8). inhibitor, as well as SB203580, a p38 kinase inhibitor, sig- Epithelial cells allow the separation of different tissues and nificantly abrogated the effect of TGF-β on TJP1 expression. body compartments by developing cell surface domains called Diphenyleneiodonium, an NADPH oxidase inhibitor, also atte- junctions, which are important for the biogenesis, main- nuated TJP1 expression in response to TGF-β in lung cancer tenance, and function of epithelia (9-11).
    [Show full text]
  • Role of PDZ-Binding Motif from West Nile Virus NS5 Protein on Viral
    www.nature.com/scientificreports OPEN Role of PDZ‑binding motif from West Nile virus NS5 protein on viral replication Emilie Giraud1*, Chloé Otero del Val2, Célia Caillet‑Saguy2, Nada Zehrouni2, Cécile Khou5, Joël Caillet4, Yves Jacob3, Nathalie Pardigon5 & Nicolas Wolf2 West Nile virus (WNV) is a Flavivirus, which can cause febrile illness in humans that may progress to encephalitis. Like any other obligate intracellular pathogens, Flaviviruses hijack cellular protein functions as a strategy for sustaining their life cycle. Many cellular proteins display globular domain known as PDZ domain that interacts with PDZ‑Binding Motifs (PBM) identifed in many viral proteins. Thus, cellular PDZ‑containing proteins are common targets during viral infection. The non‑structural protein 5 (NS5) from WNV provides both RNA cap methyltransferase and RNA polymerase activities and is involved in viral replication but its interactions with host proteins remain poorly known. In this study, we demonstrate that the C‑terminal PBM of WNV NS5 recognizes several human PDZ‑ containing proteins using both in vitro and in cellulo high‑throughput methods. Furthermore, we constructed and assayed in cell culture WNV replicons where the PBM within NS5 was mutated. Our results demonstrate that the PBM of WNV NS5 is important in WNV replication. Moreover, we show that knockdown of the PDZ‑containing proteins TJP1, PARD3, ARHGAP21 or SHANK2 results in the decrease of WNV replication in cells. Altogether, our data reveal that interactions between the PBM of NS5 and PDZ‑containing proteins afect West Nile virus replication. Arboviruses include numerous human and animal pathogens that are important global health threats responsible for arboviroses.
    [Show full text]
  • Molecular Hydrogen Accelerates the Reversal of Acute Obstructive Cholangitis‑Induced Liver Dysfunction by Restoring Gap and Tight Junctions
    MOLECULAR MEDICINE REPORTS 19: 5177-5184, 2019 Molecular hydrogen accelerates the reversal of acute obstructive cholangitis‑induced liver dysfunction by restoring gap and tight junctions ZHIYANG ZHU1*, JIANHUA YU1*, WEIGUO LIN1, HAIJUN TANG1, WEIGUANG ZHANG2 and BAOCHUN LU1 1Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine); 2Department of Molecular Medicine and Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, Zhejiang 312000, P.R. China Received October 1, 2018; Accepted March 27, 2019 DOI: 10.3892/mmr.2019.10179 Abstract. Gap junctions (GJs) and tight junctions (TJs) are periportal zone and then to bile ducts, in a highly ordered essential to maintain the function of hepatocytes. Changes manner (1). Because gap junctions (GJs) regulate direct intercel- in biliary tract pressure and the effect of lipopolysaccha- lular communication and tight junctions (TJs) completely seal ride (LPS) may lead to acute obstructive cholangitis (AOC) the bile canaliculi, these are essential to maintain the function of and cause liver injury via GJ and TJ dysfunction. Hydrogen the blood-biliary barrier (1). The most common GJ proteins in has been confirmed to have a protective role in various organs the liver, the connexins (Cx, also termed gap junction proteins) during pathological conditions and inflammation. The present Cx26 (gap junction protein β2) and Cx32 (gap junction protein study investigated the function of junction proteins and the β1) have been found to be downregulated during obstructive potential application of H2 in AOC‑induced liver injury. An cholestasis and lipopolysaccharide (LPS)-induced hepatocel- AOC rat model was established by LPS injection through a lular cholestasis (2).
    [Show full text]