Ask the Experts: the Food Versus Fuel Debate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is Still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector
applied sciences Review What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector Monica Padella *, Adrian O’Connell and Matteo Prussi European Commission, Joint Research Centre, Directorate C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit C.2-Via E. Fermi 2749, 21027 Ispra, Italy; [email protected] (A.O.); [email protected] (M.P.) * Correspondence: [email protected] Received: 16 September 2019; Accepted: 15 October 2019; Published: 24 October 2019 Abstract: Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs. -
Is Biodiesel As Attractive an Economic Alternative As Ethanol?
PURDUE EXTENSION Bio ID-341 Fueling America ThroughE Renewablenergy Resources Is Biodiesel as Attractive an Economic Alternative as Ethanol? Allan Gray Department of Agricultural Economics Purdue University What Is Biodiesel? and as a lubricant additive to low sulfur diesel Biodiesel is a renewable fuel alternative to fuel. A change in environmental laws associ- standard on-road diesel. Biodiesel is made ated with sulfur emissions from diesel has from plant oils, such as soybean oil; animal caused the industry to move from a standard fat from slaughter facilities; or used greases. number 2 diesel to a cleaner burning number Seventy-three percent of biodiesel produced 1 diesel with much lower sulfur emission. in the United States comes from soybean oil. The remaining 27% is produced from the However, number 1 diesel fuel has a much other feedstocks. lower lubricity than number 2 diesel, causing additional wear on diesel engines. By blending The ability to use a variety of feedstocks to number 1 diesel with at least 2% biodiesel, the make biodiesel differentiates this biofuel mar- lubricity properties of the fuel can be the same ket from the current ethanol market, which as number 2 diesel fuel. And, because biodie- is dominated by corn in the U.S. and sugar sel contains only small traces of sulfur when in South America. The ability to use various burned, the sulfur emission standards can still feedstocks is one of the reasons that biodiesel be met. production facilities are not as concentrated in the Midwest as ethanol plants. In 2005, approximately 75 million gallons of biodiesel were produced in 65 plants scattered How Is Biodiesel Used? across the United States (Figure 1). -
Global Production of Second Generation Biofuels: Trends and Influences
GLOBAL PRODUCTION OF SECOND GENERATION BIOFUELS: TRENDS AND INFLUENCES January 2017 Que Nguyen and Jim Bowyer, Ph. D Jeff Howe, Ph. D Steve Bratkovich, Ph. D Harry Groot Ed Pepke, Ph. D. Kathryn Fernholz DOVETAIL PARTNERS, INC. Global Production of Second Generation Biofuels: Trends and Influences Executive Summary For more than a century, fossil fuels have been the primary source of a wide array of products including fuels, lubricants, chemicals, waxes, pharmaceuticals and asphalt. In recent decades, questions about the impacts of fossil fuel reliance have led to research into alternative feedstocks for the sustainable production of those products, and liquid fuels in particular. A key objective has been to use feedstocks from renewable sources to produce biofuels that can be blended with petroleum-based fuels, combusted in existing internal combustion or flexible fuel engines, and distributed through existing infrastructure. Given that electricity can power short-distance vehicle travel, particular attention has been directed toward bio-derived jet fuel and fuels used in long distance transport. This report summarizes the growth of second-generation biofuel facilities since Dovetail’s 2009 report1 and some of the policies that drive that growth. It also briefly discusses biofuel mandates and second-generation biorefinery development in various world regions. Second generation biorefineries are operating in all regions of the world (Figure 1), bringing far more favorable energy balances to biofuels production than have been previously realized. Substantial displacement of a significant portion of fossil-based liquid fuels has been demonstrated to be a realistic possibility. However, in the face of low petroleum prices, continuing policy support and investment in research and development will be needed to allow biofuels to reach their full potential. -
Biodiesel Production from Microalgae
J. Biol. Today's World. 2013 Feb; 2 (2): 38-42 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Journal of Biology and Today's World ISSN 2322-3308 Journal home page: http://journals.lexispublisher.com/jbtw/ Received: 26 January 2013 • Accepted: 10 February 2013 Review doi:10.15412/J.JBTW. 01020204 Biodiesel Production from Microalgae Mahya Mohammadi, Morteza Azizollahi-Aliabadi* Department of Microbiology, Faculty of Basic Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran *correspondence should be addressed to Morteza Azizollahi-Aliabadi, Department of Microbiology, Faculty of Basic Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran; Tell: +98; Fax: +98; Email: [email protected]. ABSTRACT Technology for creating also applying biodiesel has been recognized for more than 50 years. Microalgae are a various type of prokaryotic as well as eukaryotic photosynthetic microorganisms that grow rapidly due to their simple structure. Biodiesel is considered as a renewable fuel because it can be obtained from the transformation of vegetable oils, cooking greases or animal fats. Microalgae are sunlight-driven cell factories that convert carbon dioxide to potential biofuels, foods, nourish also high-value bioactives. In addition, these photosynthetic microorganisms are beneficial in bioremediation applications nitrogen fixing biofertilizers. This article focuses on microalgae as a potential source -
Heat and Mass Transfer During Lignocellulosic Biomass Torrefaction: Contributions from the Major Components—Cellulose, Hemicellulose, and Lignin
processes Article Heat and Mass Transfer during Lignocellulosic Biomass Torrefaction: Contributions from the Major Components—Cellulose, Hemicellulose, and Lignin Ken-ichiro Tanoue 1,*, Kentaro Hikasa 1, Yuuki Hamaoka 1, Akihiro Yoshinaga 1, Tatsuo Nishimura 1, Yoshimitsu Uemura 2,3 and Akihiro Hideno 4 1 Department of Mechanical Engineering, School of Sciences and Engineering for Innovation, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611, Japan; [email protected] (K.H.); [email protected] (Y.H.); [email protected] (A.Y.); [email protected] (T.N.) 2 NPO Kuramae Bioenergy, Minato-ku, Tokyo 108-0023, Japan; [email protected] 3 Center for Biofuel and Biochemical Research, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia 4 Paper industry innovation center of Ehime University, 127 Mendori-cho, Shkokuchuo 799-0113, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-836-85-9122 Received: 27 June 2020; Accepted: 6 August 2020; Published: 9 August 2020 Abstract: The torrefaction of three representative types of biomass—bamboo, and Douglas fir and its bark—was carried out in a cylindrical-shaped packed bed reactor under nitrogen flow at 573 K of the reactor wall temperature. As the thermal energy for the torrefaction was supplied from the top and the side of the bed, the propagation of the temperature profile of the bed is a crucial factor for discussing and improving the torrefaction reactor performance. Therefore, the temperature and gas flow rate (vector) profiles throughout the bed were calculated by model simulation so as to scrutinize this point. -
Download PDF (Inglês)
Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.abeq.org.br/bjche Vol. 32, No. 01, pp. 23 - 33, January - March, 2015 dx.doi.org/10.1590/0104-6632.20150321s00003146 EVALUATION OF COMPOSITION, CHARACTERIZATION AND ENZYMATIC HYDROLYSIS OF PRETREATED SUGAR CANE BAGASSE A. A. Guilherme1*, P. V. F. Dantas1, E. S. Santos1, F. A. N. Fernandes2 and G. R. Macedo1 1Department of Chemical Engineering, Federal University of Rio Grande do Norte, UFRN, Av. Senador Salgado Filho 3.000, Campus Universitário, Lagoa Nova, Bloco 16, Unidade II, 59.078-970, Natal - RN, Brazil. Phone: + (55) 84 3215 3769, Fax: + (55) 84 3215 3770 E-mail: [email protected] 2Department of Chemical Engineering, Federal University of Ceará, UFC, Campus do Pici, Bloco 709, 60455-760, Fortaleza - CE, Brazil. (Submitted: December 2, 2013 ; Revised: March 28, 2014 ; Accepted: March 31, 2014) Abstract - Glucose production from sugarcane bagasse was investigated. Sugarcane bagasse was pretreated by four different methods: combined acid and alkaline, combined hydrothermal and alkaline, alkaline, and peroxide pretreatment. The raw material and the solid fraction of the pretreated bagasse were characterized according to the composition, SEM, X-ray and FTIR analysis. Glucose production after enzymatic hydrolysis of the pretreated bagasse was also evaluated. All these results were used to develop relationships between these parameters to understand better and improve this process. The results showed that the alkaline pretreatment, using sodium hydroxide, was able to reduce the amount of lignin in the sugarcane bagasse, leading to a better performance in glucose production after the pretreatment process and enzymatic hydrolysis. -
Biochars and Their Use As Transesterification Catalysts for Biodiesel Production
catalysts Review Biochars and Their Use as Transesterification Catalysts for Biodiesel Production: A Short Review John Vakros Department of Chemistry, University of Patras, GR 26504 Patras, Greece; [email protected]; Tel.: +30-26-1099-7143 Received: 16 October 2018; Accepted: 14 November 2018; Published: 20 November 2018 Abstract: Biodiesel can be a significant alternative for diesel. Usually, it is produced through transesterification with a base catalyst. Using heterogeneous catalysts for transesterification, the process can be more efficient. Among the possible catalysts that can be used, biochars combine high performance for transesterification and valorization of waste biomass. Biochars are cheap materials, and are easy to activate through chemical treatment with acid or base solutions. In this short review, the application of biochar as solid heterogeneous catalysts for transesterification of lipids to produce biodiesel is discussed. Keywords: biodiesel; biochar; acid modification; base modification; transesterification; pseudocatalytic transesterification 1. Introduction Two great challenges that people are called to face in our time is to meet the increasing demand for energy and to reduce the wastes released in the environment. The energy challenge is approached with CO2 neutral fuels like biofuels. Among them, biodiesel has significant advantages and it is preferable for using in existing engines and transport infrastructures. Biodiesel is usually produced through transesterification/esterification of lipids [1]. This process requires the presence of a catalyst. On the other hand, biomass is a class of solid wastes with interesting properties. Biomass can be used directly as fuel, or through gasification or pyrolysis, and produce valuable products. What is more attractive is that the by-product of the pyrolysis process is a carbon rich solid called biochar. -
Lignocellulosic Biomass Fractionation by Mineral Acids and Resulting
Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities Vincent Oriez, Jérôme Peydecastaing, Pierre-Yves Pontalier To cite this version: Vincent Oriez, Jérôme Peydecastaing, Pierre-Yves Pontalier. Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities. Molecules, MDPI, 2019, 24 (23), 21 p. 10.3390/molecules24234273. hal-02622871 HAL Id: hal-02622871 https://hal.inrae.fr/hal-02622871 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License molecules Review Lignocellulosic Biomass Fractionation by Mineral Acids and Resulting Extract Purification Processes: Conditions, Yields, and Purities Vincent Oriez * ,Jérôme Peydecastaing and Pierre-Yves Pontalier * Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, 4 allée Emile Monso, 31030 Toulouse, France; [email protected] * Correspondence: [email protected] or [email protected] (V.O.); [email protected] (P.-Y.P.) Academic Editor: Rafał Łukasik Received: 14 October 2019; Accepted: 14 November 2019; Published: 23 November 2019 Abstract: Fractionation of lignocellulose is a fundamental step in the valorization of cellulose, hemicelluloses, and lignin to produce various sustainable fuels and chemicals. -
Lignocellulosic Biomass for Advanced Biofuels and Bioproducts: Workshop Report, DOE/SC-0170
DRAFT: February 2015 Bioenergy Workshop June 23–24, 2014, Washington, D.C. Convened by U.S. Department of Energy Office of Science Office of Biological and Environmental Research Co-Chairs Erich Grotewold, Ph.D Kristala L. Jones Prather, Ph.D Ohio State University Massachusetts Institute of Technology Organizer Biological Systems Science Division Kent Peters, Ph.D. [email protected] 301.903.5549 http://genomicscience.energy.gov/biofuels/lignocellulose/ Mission The Office of Biological and Environmental Research (BER) advances world-class fundamental research programs and scientific user facilities to support the Department of Energy’s energy, environment, and basic research missions. Addressing diverse and critical global challenges, the BER program seeks to understand how genomic information is translated to functional capabilities, enabling more confident redesign of microbes and plants for sustainable biofuel production, improved carbon storage, or contaminant bioremediation. BER research advances understanding of the roles of Earth’s biogeochemical systems (the atmosphere, land, oceans, sea ice, and subsurface) in determining climate so that it can be predicted decades or centuries into the future, information needed to plan for energy and resource needs. Solutions to these challenges are driven by a foundation of scientific knowledge and inquiry in atmospheric chemistry and physics, ecology, biology, and biogeochemistry. Cover Credits Brown Column: From top to bottom. Poplar tree tops (Oak Ridge National Laboratory). Switchgrass (U.S. Department of Agriculture’s Agricultural Research Service). Atomic force micrograph showing nanometer-scale detail of interwoven rope-like, lignocellulosic microfibril bundles in a switchgrass cell wall (BioEnergy Science Center and National Renewable Energy Laboratory). Scanning electron micrograph of Clostridium cellulolyticum cells growing on switchgrass (BioEnergy Science Center and National Renewable Energy Laboratory). -
Bioresources.Com
PEER-REVIEWED ARTICLE bioresources.com PRODUCTION OF XYLO-OLIGOSACCHARIDES FROM MISCANTHUS x GIGANTEUS BY AUTOHYDROLYSIS Pablo Ligero,a Johannes C. van der Kolk,b Alberto de Vega,a,* and Jan E.G. van Dam b Xylo-oligosaccharides were obtained from Miscanthus x giganteus. The process was designed as a biorefinery scheme, which seeks the separation of the three main components: cellulose, hemicelluloses, and lignin. To extract the hemicelluloses, particularly xylans, in an efficient way, Miscanthus was subjected to autohydrolysis. The system was evaluated for the effects of temperature (160 to 200oC) and reaction time (15 to 60 min) on various parameters, reflecting the changes undergone during the process. The results showed that autohydrolysis is a suitable method for obtaining high yields of xylo-oligosaccharides, reaching values close to 65% of the dissolved xylans (based on the initial amount of potential xylose). Analysis of the process by using the severity factor (RO) allowed for the identification of a set of time-temperature values for which the fractionation was optimal. Keywords: Miscanthus x giganteus; Autohydrolysis; Xylo-oligosaccharides; Fractionation Contact information: a: Departament of Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of A Coruña, Rúa da Fraga 10, 15004, A Coruña, Spain; b: Food and Biobased Research, Wageningen University and Research Centre, P.O. Box 17, 6700 AA Wageningen, The Netherlands; * Corresponding author: [email protected] INTRODUCTION Lignocellulosic biomass is considered to be a major source for ‘green’ chemicals, bio-fuels, and biobased products. Among the advantages of using lignocellulosic biomass can be mentioned that it is abundantly available around the world, non-competitive with food production, and it is a renewable and sustainable resource. -
Production of Biodiesel from Sunflower Oil and Ethanol by Base Catalyzed Transesterification
Production of biodiesel from sunflower oil and ethanol by base catalysed transesterification Production of biodiesel from sunflower oil and ethanol by base catalyzed transesterification MSc Thesis Alejandro Sales Department of Chemical Engineering Royal Institute of Technology (KTH) Stockholm, Sweden June 2011 Production of biodiesel from sunflower oil and ethanol by base catalysed transesterification Production of biodiesel from sunflower oil and ethanol by base catalyzed transesterification MSc Thesis Alejandro Sales Supervisor Rolando Zanzi Vigouroux Department of Chemical Engineering Royal Institute of Technology (KTH) Stockholm, Sweden Examiner Joaquín Martínez Department of Chemical Engineering Royal Institute of Technology (KTH) Stockholm, Sweden June 2011 Abstract Biodiesel is an attractive alternative fuel for diesel engines.The feedstock for biodiesel production is usually vegetable oil, pure oil or waste cooking oil, or animal fats The most common way today to produce biodiesel is by transesterification of the oils with an alcohol in the presence of an alkaline catalyst. It is a low temperature and low‐pressure reaction. It yields high conversion (96%‐98%) with minimal side reactions and short reaction time. It is a direct conversion to biodiesel with no intermediate compounds. This work provides an overview concerning biodiesel production. Likewise, this work focuses on the commercial production of biodiesel. The Valdescorriel Biodiesel plant, located in Zamora (Spain), is taken like model of reference to study the profitability and economics of a biodiesel plant. The Valdescorriel Biodiesel plant has a nominal production capacity of 20000 biodiesel tons per year. The initial investment for the biodiesel plant construction is the 4.5 millions €. The benefits are 2 million €/year. -
Food Or Non-Food: Which Agricultural Feedstocks Are Best for Industrial Uses?
nova paper #2 on bio-based economy 2013-07 Food or non-food: Which agricultural feedstocks are best for industrial uses? Authors: Michael Carus (Dipl.-Physicist) and Lara Dammer (M.A. Pol. Sci.), nova-Institut GmbH nova papers on bio-based economy are proposals to stimulate the discussion on current WRSLFVRIWKHELREDVHGHFRQRP\E\FUHDWLQJQHZSHUFHSWLRQVEDVHGRQVFLHQWL¿FIDFWVDQG by inviting relevant stakeholders to participate in decision-making processes and debates. Contents Page 1 Executive Summary ............................................................................................... 2 2 Introduction & Objectives ...................................................................................... 2 3 Biomass use in the European Union and worldwide ............................................. 2 4 Current frameworks for the industrial use of biomass ...........................................4 5 A differentiated approach to finding the most suitable biomass for industry ........ 4 6 Facts about food and non-food crops ................................................................... 5 7 Level playing field for industrial material use and bioenergy/biofuels .................... 7 8 Impacts on policy – what are we asking for? ........................................................ 8 9 Literature ................................................................................................................ 9 Download this paper and further documents at: www.bio-based.eu/policy/en V.i.S.d.P.: Michael Carus, nova-Institut GmbH, Industriestrasse