United States Patent (19) 11) 4,091,082 Gessell Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11) 4,091,082 Gessell Et Al United States Patent (19) 11) 4,091,082 Gessell et al. 45 May 23, 1978 54 HYDROCARBON SOLUBLE CATALYST (III) Ammines Chemical Communications, 1970 pp. CONTAINING ONTROGEN OR 875-876 Elson et al. DHYDROGEN TRANSTION METAL The Interaction of Dinitrogen Complexer of Ruthe COMPLEX nium and Osmium with metal salts. Chemical Commu 75) Inventors: Donald Earl Gessell, Baton Rouge, nications, 1970, pp. 90–91, Chatt et al. La; Kirby Lowery, Jr., Lake Bioinorganic Chemistry, Advances in Chemistry Series Jackson, Tex. 100, 79 (1971), Allen. pp. 79-94. Bioinorganic Chemistry, Advances in Chemistry Series 73 Assignee: The Dow Chemical Company, 100, 95 (1971), "Fixation of Molecular Nitrogen Under Midland, Mich. Mild Cond. pp. 95-110. (21) Appl. No.: 693,071 Chemical Reviews, 73 11(1973) Allen et al. pp. 11-20. 22 Filed: Jun. 4, 1976 51) Int. C.? ....................... C01B 21/00; B01J 31/00; Primary Examiner-Patrick P. Garvin B01J 27/24: CO1B 11/00 Assistant Examiner-William G. Wright 52 U.S. C. ............................... 423/413; 252/429 A; Attorney, Agent, or Firm-J. G. Carter; M.S. Jenkins 252/429 B; 252/438; 42.3/472; 423/644; 526/159; 526/161; 526/164; 526/169 57 ABSTRACT 58) Field of Search ............... 252/429 A, 429 B, 438; 423/81, 413, 472, 644, 351 Hydrocarbon-soluble compositions useful as the transi tion metal component in the Ziegler polymerization of 56 References Cited a-olefins are provided by reacting molecular nitrogen U.S. PATENT DOCUMENTS or hydrogen with a transition metal compound such as 1,491,588 4/1924. Duparc et al. ....................... 252/438 titanium trichloride to form a dinitrogen or dihydrogen 3,403, 197 9/1968 Seelbach et al. .. ... 252/429 AX complex of the transition metal compound. OTHER PUBLICATIONS Dinitrogen Complexer of Osmium (III) and Ruthenium 7 Claims, No Drawings 4,091,082 1. 2 tion metal, anionic groups and molecular nitrogen and HYDROCARBON SOLUBLE CATALYST /or molecular hydrogen. With the exception of divalent CONTAINING DENITROGEN OR DIHYDROGEN nickel compounds, the transition metal of the complex TRANSTION METAL COMPLEX has an oxidation state or valence greater than two. In all complexes of this invention, the molecular nitrogen or BACKGROUND OF THE INVENTION molecular hydrogen forms a coordinate covalent bond This invention relates to new catalytic dinitrogen and with the transition metal. The anionic groups of the dihydrogen complexes of a transition metal and to a complex are preferably halide, most preferably chloride method for preparation of the complexes. or bromide. The number of anionic groups is sufficient In recent years, dinitrogen complexes of certain tran O to satisfy the valence charge on the transition metal. sition metal have been prepared by (1) reacting a coor Due to the high reactivity and instability of the dinitro dination, complex of the transition metal with molecu gen complexes under conditions required for detailed lar nitrogen in the presence of reducing agent, (2) react structural analysis, such complexes are not further char ing a hydride of transition metal in lower oxidation state acterized as to structure. In preferred dinitrogen com with molecular nitrogen or (3) displacing a weaker 15 plexes, it is believed that the ratio of atoms of the transi ligand in a coordination complex of the transition metal tion metal to molecular nitrogen and/or molecular hy with molecular nitrogen. See, for example, Allen, "De drogen is from about 1:0.3 to about 1:3, more preferably velopments in Inorganic Models of N. Fixation,' Bioi from about 1:1 to about 1:3, most preferably about 1:1, norganic Chemistry, Advances in Chemistry Series, 100, and the atomic ratio of transition metal atoms to anionic 79(1971) and Allen et al., Chemical Reviews, 73, 20 groups is from about 1:2 to about 1:4, preferably about 11(1973). Such complexes have been described as useful 1:3. Such complexes are generally soluble in hydrocar in the fixation of nitrogen. See, for example, Van Tam bon solvents and should be maintained under an atmo elen, "Fixation of Molecular Nitrogen under Mild Con sphere of nitrogen, hydrogen or mixture thereof de ditions,” Bioinorganic Chemistry, Advances in Chemis pending upon whether molecular nitrogen, molecular try Series, 100, 95(1971). 25 hydrogen or combination thereof is part of the complex. Heretofore, however, it has not been recognized that For example, a complex having molecular nitrogen and molecular nitrogen or molecular hydrogen will react in no molecular hydrogen is preferably kept under a nitro the absence of a reducing agent with higher oxidation gen atmosphere. state transition metal compound containing no coordi The dinitrogen complex is prepared by reacting, in nate covalent bonds to form a dinitrogen or dihydrogen 30 the absence of a reducing agent, molecular nitrogen or complex of the transition metal. molecular hydrogen in an inert organic diluent with a transition metal compound, preferably a transition SUMMARY OF THE INVENTION metal halide, which compound contains no coordinate The present invention, in one aspect, is a dinitrogen covalent bond. and/or dihydrogen complex of divalent nickel or a 35 Exemplary transition metal compounds include, for transition metal having an oxidation state greater than example, the halides such as the chlorides, bromides, two. In the complex, the transition metal is bonded by a iodides and fluorides, of the transition metals of Groups coordinate covalent bond to molecular nitrogen and/or 4b, 6b, 7b and 8 of Mendeleev's Periodic Table of Ele molecular hydrogen. For purposes of brevity, the fore ments as set forth in Handbook of Chemistry and Physics, going complex will hereinafter be referred to as "the 40 CRC, 48th Edition (1967-1968). Exemplary metals are dinitrogen complex' and will include both the dinitro titanium, chromium, zirconium, tungsten, manganese, gen and dihydrogen complexes as well as mixtures of molybdenum, ruthenium, rhodium, cobalt, nickel and dinitrogen and dihydrogen complexes. platinum, with titanium and zirconium being preferred. In a second aspect, the invention is a method for In the most advantageous embodiments, the transition preparing the aforementioned complex which com 45 metal compound is insoluble in hydrocarbon diluents prises reacting molecular nitrogen, molecular hydrogen and is rendered soluble by the formation of the dinitro or a mixture thereof under moderate conditions of pres gen complex. Exemplary preferred transition metal sure and temperature with a transition metal compound compounds are titanium trichloride, zirconium tetra containing no coordinate covalent bond. With the ex chloride, tungsten hexachloride, molybdenum penta ception of the suitable divalent nickel compounds, the 50 chloride, nickel dichloride, with the halides, particu transition metal compounds used in the method have an larly the chlorides, of titanium being most preferred. oxidation state greater than two. This reaction is advan The reaction to form the complex is advantageously tageously carried out in the absence of a reducing agent. carried out in an inert organic diluent attemperatures in In a third aspect, the invention is a process for poly the range from ambient to about 200 C by pressuring merizing an a-olefin under conditions characteristic of 55 nitrogen or hydrogen gas into a reactor containing the Ziegler polymerization wherein the dinitrogen complex transition metal compound dispersed in the inert dilu is employed as the transition metal component of a ent. For purposes of this invention, an inert organic Ziegler catalyst. diluent is an organic fluid that does not prevent forma In addition to being useful as a polymerization cata tion of the complex and is non-reactive with the com lyst, the dinitrogen complex of the present invention is plex once it is formed. Accordingly, liquid hydrocarbon also useful as a catalyst for alkylation and hydrogena such as the aliphatic and aromatic hydrocarbons are tion reactions and as a catalyst in the fixation of nitro useful diluents with the acyclic aliphatic hydrocarbons gen. being preferred. Examples of suitable inert organic dilu ents include hexane, isooctane, octane, isononane, no DETAILED DESCRIPTION OF THE 65 nane, decane, cyclohexane, benzene, 2,2,5-trimethyl EMBODIMENTS hexane and mixtures thereof. Preferred diluents are The dinitrogen complex of the present invention is mixtures of isoparaffins, especially those having 8 to 9 broadly characterized as a complex comprising a transi carbon atoms per molecule. Pressures employed in the 4,091,082 3 4. reaction normally range from about 40 to about 300 avoid oversaturation of the solvent with polymer. If psig, preferably from about 60 to about 150 psig, with such saturation occurs before the catalyst becomes de nitrogen and/or hydrogen gas constituting at least 10 pleted, the full efficiency of the catalyst is not realized. mole percent, preferably from about 50 to 100 mole For best results, it is preferred that the amount of poly percent, and especially from about 90 to 100 mole per mer in the carrier not exceed about 50 weight percent cent of the gas phase in the reaction vessel. Although based on the total weight of the reaction mixture. concentration of transition metal compound dispersed The organometallic cocatalyst is suitably any reduc in the inert diluent is not particularly critical, it is gener ing component commonly employed in Ziegler poly ally desirable to employ concentrations in the range merization. For example, the cocatalyst may be any from about 0.1 to about 10, preferably from about 1 to O organometallic reducing compounds employed in con 10, weight percent of transition metal compound in the ventional Ziegler polymerization, preferably an alkyl inert diluent. aluminum compound having at least two alkyl groups In cases wherein the transition metal compound is per aluminum, e.g., aluminum trialkyls or dialkyl alumi insoluble in the organic diluent, it is desirable to agitate num halides. Examples include aluminum triethyl, alu the reaction mixture during the reaction to maintain the 15 minum triisobutyl, aluminum tripropyl, aluminum tri insoluble compound dispersed in the diluent.
Recommended publications
  • Preparation and Characterization of Iridium Hydride and Dihydrogen Complexes Relevant to Biomass Deoxygenation
    Preparation and Characterization of Iridium Hydride and Dihydrogen Complexes Relevant to Biomass Deoxygenation Jonathan M. Goldberg A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: D. Michael Heinekey, Chair Karen I. Goldberg, Chair Brandi M. Cossairt Program Authorized to Offer Degree: Department of Chemistry © Copyright 2017 Jonathan M. Goldberg University of Washington Abstract Preparation and Characterization of Iridium Hydride and Dihydrogen Complexes Relevant to Biomass Deoxygenation Jonathan M. Goldberg Chairs of the Supervisory Committee: Professor D. Michael Heinekey Professor Karen I. Goldberg Department of Chemistry This thesis describes the fundamental organometallic reactivity of iridium pincer complexes and their applications to glycerol deoxygenation catalysis. These investigations provide support for each step of a previously proposed glycerol deoxygenation mechanism. Chapter 1 outlines the motivations for this work, specifically the goal of using biomass as a chemical feedstock over more common petroleum-based sources. A discussion of the importance of transforming glycerol to higher value products, such as 1,3-propanediol, is discussed. Chapter 2 describes investigations into the importance of pincer ligand steric factors on the coordination chemistry of the iridium metal center. Full characterization of a five-coordinate iridium-hydride complex is presented; this species was previously proposed to be a catalyst resting state for glycerol deoxygenation. Chapter 3 investigates hydrogen addition to R4(POCOP)Ir(CO) R4 3 t i R4 R4 3 [ POCOP = κ -C6H3-2,6-(OPR2)2 for R = Bu, Pr] and (PCP)Ir(CO) [ (PCP) = κ -C6H3-2,6- t i (CH2PR2)2 for R = Bu, Pr] to give cis- and/or trans-dihydride complexes.
    [Show full text]
  • Osmium(II)–Bis(Dihydrogen) Complexes Containing Caryl,CNHC– Chelate Ligands: Preparation, Bonding Situation, and Acidity
    Osmium(II)–bis(Dihydrogen) Complexes Containing Caryl,CNHC– Chelate Ligands: Preparation, Bonding Situation, and Acidity. Tamara Bolaño,† Miguel A. Esteruelas,*,† Israel Fernández,‡ Enrique Oñate,† Adrián Palacios,† Jui-Yi Tsai,√ and Chuanjun Xia√ †Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innova- ción en Química Avanzada (ORFEO – CINQA), Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain ‡Departamento de Química Orgánica, Facultad de Ciencias Químicas, Centro de Innovación en Química Avanzada (ORFEO – CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain √Universal Display Corporation, 375 Phillips Boulevard, Ewing, New Jersey 08618, United States Supporting Information Placeholder i ABSTRACT: The hexahydride complex OsH6(P Pr3)2 (1) reacts with the BF4-salts of 1-phenyl-3-methyl-1-H-benzimidazolium, 1- phenyl-3-methyl-1-H-5,6-dimethyl-benzimidazolium, and 1-phenyl-3-methyl-1-H-imidazolium to give the respective trihydride- 2 i osmium(IV) derivatives OsH3( -Caryl,CNHC)(P Pr3)2 (2–4). The protonation of these compounds with HBF4·OEt2 produces the re- 2 2 i duction of the metal center and the formation of the bis(dihydrogen)-osmium(II) complexes [Os( -Caryl,CNHC)(η -H2)2(P Pr3)2]BF4 (5–7). DFT calculations using AIM and NBO methods reveal that the Os–NHC bond of the Os-chelate link tolerates a significant π- backdonation from a doubly occupied dπ(Os) atomic orbital to the pz atomic orbital of the carbene carbon atom. The π-accepting capacity of the NHC unit of the Caryl,CNHC-chelate ligand, which is higher than those of the coordinated aryl group and phosphine ligands, enhances the electrophilicity of the metal center activating one of the coordinated hydrogen molecules of 5–7 towards the water heterolysis.
    [Show full text]
  • Selectivity of C-H Activation and Competition Between C-H and C-F Bond Activation at Fluorocarbons
    This is a repository copy of Selectivity of C-H activation and competition between C-H and C-F bond activation at fluorocarbons. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/133766/ Version: Accepted Version Article: Eisenstein, Odile, Milani, Jessica and Perutz, Robin N. orcid.org/0000-0001-6286-0282 (2017) Selectivity of C-H activation and competition between C-H and C-F bond activation at fluorocarbons. Chemical Reviews. pp. 8710-8753. ISSN 0009-2665 https://doi.org/10.1021/acs.chemrev.7b00163 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ revised May 2017 Selectivity of C-H activation and competition between C-H and C-F bond activation at fluorocarbons Odile Eisenstein,* ‡ Jessica Milani, and Robin N. Perutz* ‡ Institut Charles Gerhardt, UMR 5253 CNRS Université Montpellier, cc 1501, Place E. Bataillon, 34095 Montpellier, France and Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O.
    [Show full text]
  • 1 5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 11
    5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 11 Apr 11: Hydride and Dihydrogen Complexes – – 2 Hydride and dihydrogen are both 2e donors, H (1s ) and H2 (σ1s2) Hydride complexes are synthesized by: (1) Replace halide with hydride using hydride transfer reagents: (2) Heterolytic cleavage of a dihydrogen complex: (3) Oxidative-addition of hydrogen to a metal complex: There are some general features of H2 oxidative-addition: • cis addition – – • 16e complexes or less add H2 (since 2e s are added to the metal complex) • bimolecular rate law (rate = k [IrL2Cl(CO)] [H2]) ‡ • ∆H = 11 kcal/mol (little H–H stretch in the transition state recall that ‡ BDE(H2) = 104 kcal/mol), and a ∆S = 21 eu – – – – • rate decreases along the series X = I > Br > Cl (100 ; 14 : 0.9) • little isotope effect, kH / kD = 1.09 1 For the oxidative-addition reaction, there are two possibilities for the transition state: 1 an H2 intermediate 2 a three-center transition state Both reaction pathways are viable for oxidative-addition (and the reverse reaction, reductive-elimination). For some metal complexes, the “arrested” addition product can be isolated—the dihydrogen complex is obtained as a stable species that can be put in a bottle. Kubas first did this in 1984 with the following reaction: 2 Several observables identify this as an authentic dihydrogen complex vs. a dihydride: • d(H—H) = 0.84 Å (as measured from neutron diffraction). This distance is near the bond distance of free H2, d(H—H) = 0.7414 Å. –1 • a symmetric H2 vibration is observed, ν(H—H) = 2,690 cm , as compared –1 to ν(H—H) = 4,300 cm in free H2.
    [Show full text]
  • Metal Hydride Complexes
    Metal Hydride Complexes • Main group metal hydrides play an important role as reducing agents (e.g. LiH, NaH, LiAlH4, LiBH4). • The transition metal M-H bond can undergo insertion with a wide variety of unsaturated compounds to give stable species or reaction intermediates containing M-C bonds • They are not only synthetically useful but are extremely important intermediates in a number of catalytic cycles and also in battery technologies. 1 Transition Metal Hydride Preparation 1. Protonation requires an electron rich basic metal center 1. From Hydride donors main group metal hydrides are typically used as donors. 2 Transition Metal Hydride Preparation 1. Protonation requires an electron rich basic metal center 2. From Hydride donors main group metal hydrides are typically used as donors. 3 3. From H 2 via oxidative addition requires a coordinatively unsaturated metal center 3. From a ligand ( β-elimination) 4 3. From H 2 via oxidative addition requires a coordinatively unsaturated metal center 3. From a ligand ( β-elimination) H O K O Ph3P Cl Ph3P H Ru 2PPh3 Ru KCl Cl PPh3 Ph3P PPh3 H PPh3 4. From a ligand (decarboxylation) CO CO CO2 CO OC CO OC CO OC CO Cr OH Cr Cr OC CO OC COOH OC H CO CO CO Cr(CO)6 CO CO OC CO OC CO Cr Cr CO OC H CO 5 CO CO Transition Metal Hydride Reactivity • Hydride transfer and insertion are closely related • A metal hydride my have acidic or basic character depending on the electronic nature of the metal involved (and of course its ligand set).
    [Show full text]
  • WO 2013/185114 A2 12 December 2013 (12.12.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/185114 A2 12 December 2013 (12.12.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/36 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 13/044842 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, 7 June 2013 (07.06.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/657,685 8 June 2012 (08.06.2012) US (84) Designated States (unless otherwise indicated, for every 61/759,817 1 February 20 13 (01.02.2013) US kind of regional protection available): ARIPO (BW, GH, 61/801,603 15 March 2013 (15.03.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 61/829,775 31 May 2013 (3 1.05.2013) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicant: BIOGEN IDEC MA INC.
    [Show full text]
  • C)Ffkx.Ali%& Copy
    . ~ Submitted to the Encyclopedia of Catalysis; http: //www.enccat.com/ July 2000 4 * BNL-67609 Isotope Methods in Homogeneous Catalysis R. Morris Bullock and Bruce R. Bender Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000 and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92110 The use of isotope labels has had a Iimdamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and “followed” where they go or don’t go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough – what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most carefid studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerfid. Direct substitution of D for H (e.g., D2 vs. H2, or D+vs. H’_)and measurement of the rate of a catalytic reaction provides a determination of the kinetic deuterium isotope effect on the overall reaction.
    [Show full text]
  • H2 Binding, Splitting, and Net Hydrogen Atom Transfer at a Paramagnetic Iron Complex
    H2 Binding, Splitting, and Net Hydrogen Atom Transfer at a Paramagnetic Iron Complex Demyan E. Prokopchuk,‡,† Geoffrey M. Chambers,‡ Eric D. Walter,§ Michael T. Mock,‡à and R. Morris Bullock*,‡ ‡ Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, WA 99352, United States § Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States ABSTRACT: The reactivity of H2 with abundant transition metals is crucial for developing catalysts for energy storage in chemical bonds. While diamagnetic transition metal complexes that bind and split H2 have been extensively studied, paramagnetic complexes I + I+ that exhibit this behavior remain rare. We describe the reactivity of a square planar S = ½ Fe (P4N2) cation (Fe ) that reversibly binds H2/D2 in solution, exhibiting an inverse equilibrium isotope effect of KH2/KD2 = 0.58(4) at -5.0 °C. In the presence of excess H2, I + the dihydrogen complex Fe (H2) cleaves H2 at 25 °C in a net hydrogen atom transfer reaction to give the dihydrogen-hydride cation II + trans-Fe (H)(H2) . The proposed mechanism of H2 splitting involves both intra- and intermolecular steps, resulting in a mixed first- I+ III + and second-order rate law with respect to initial [Fe ]. The key intermediate is a paramagnetic dihydride complex, trans-Fe (H)2 , whose weak FeIII-H bond dissociation free energy (calculated BDFE = 44 kcal/mol) leads to bimetallic H-H homolysis, generating II + trans-Fe (H)(H2) . Reaction kinetics, thermodynamics, electrochemistry, EPR spectroscopy, and DFT calculations all support the proposed reaction mechanism. The coordination and reactivity of H2 ligands at diamagnetic transition metals has been intensely studied for decades.1 Recent efforts in sustainable energy have focused on using + - dihydrogen (H2) or protons/electrons (H /e ) as energy carriers that are interconverted using molecular electrocatalysts.2 The thermodynamic bias for electrocatalytic H production or the 2 Figure 1.
    [Show full text]
  • Dihydrogen Bonds: a Study
    DIHYDROGEN BONDS: A STUDY David HUGAS GERMÀ ISBN: 978-84-694-2209-0 Dipòsit legal: GI-190-2011 http://hdl.handle.net/10803/7921 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Universitat de Girona Master of Science Thesis Dihydrogen Bonds: A study by David Hugas Germ`a Girona, summer 2010 Doctoral programme of\Qu´ımica te`orica i computacional" Supervisor: Dr. S´ılvia Simon Rabasseda Co-Supervisor: Prof. Dr. Miquel Duran Portas Mem`oria presentada per optar al t´ıtol de Doctor per la Universitat de Girona This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Departament de Qu´ımica Institut de Area` de Qu´ımica F´ısica Qu´ımica Computacional La doctora S´ılvia Simon i Rabasseda, professora d'Universitat a l'Area` de Qu´ımica F´ısica de la Universitat de Girona i el professor doctor Miquel Duran i Portas, catedr`atic d'Universitat a l'Area` de Qu´ımica F´ısica de la Universitat de Girona CERTIFIQUEN QUE: En David Hugas i Germ`a, llicenciat en Qu´ımica per la Universitat de Girona, ha realitzat sota la seva direcci´o,a l'Institut de Qu´ımica Com- putacional i al Departament de Qu´ımica de la Facultat de Ci`encies de la Universitat de Girona el treball d'investigaci´oque porta per nom: \Dihydrogen Bonds: A Study" que es presenta en aquesta mem`oria per optar al grau de Doctor per la Universitat de Girona.
    [Show full text]
  • Reactivity of a Ruthenium Bis(Dinitrogen) Complex
    Reactivity of a Ruthenium Bis(Dinitrogen) Complex By Samantha Lau July 2018 Department of Chemistry Imperial College London A thesis submitted for Doctorate of Philosophy Declaration of Originality The work discussed in this thesis was conducted in the Department of Chemistry, Imperial College London, between October 2014 and April 2018. Unless stated otherwise, all the work is entirely my own and has not been submitted for a previous degree at this, or any other university. Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. [1] Abstract This thesis investigated the reactivity of the ruthenium bis(dinitrogen) complex [Ru(H)2(N2)2(PCy3)2] 2 (1), an analogue of the ruthenium bis(dihydrogen) complex [Ru(H)2(η -H2)2(PCy3)2]. It was demonstrated that 1 was able to effect the sp2C–X (X= H, O) bond cleavage of acetophenone substrates to generate 5-membered organometallic intermediates. The by-products from the C–O cleavage reactions were identified as alcohols which also react with 1 at a faster or equal rate to the substrates. The mechanism of these C–X cleavage reactions were probed experimentally and computationally to show that the C–H bond cleavage pathway was operating through a σ-complex assisted metathesis pathway whereas the C–O cleavage pathway was operating through a Ru(II)/Ru(IV) redox mechanism.
    [Show full text]
  • Determining the Catalyst Properties That Lead to High Activity And
    pubs.acs.org/Organometallics Article Determining the Catalyst Properties That Lead to High Activity and Selectivity for Catalytic Hydrodeoxygenation with Ruthenium Pincer Complexes Wenzhi Yao, Sanjit Das, Nicholas A. DeLucia, Fengrui Qu, Chance M. Boudreaux, Aaron K. Vannucci,* and Elizabeth T. Papish* Cite This: https://dx.doi.org/10.1021/acs.organomet.9b00816 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Ten ruthenium pincer complexes were evaluated as catalysts for the hydrodeoxygenation (HDO) reaction on a lignin monomer surrogate, vanillyl alcohol. Four of these complexes are reported herein with the synthesis and full characterization data for all and single-crystal X-ray diffraction data for three complexes − bearing OH/O , NMe2, and Me substituents on the pincer. A systematic study of these CNC pincer complexes revealed that the π-donor substituent on the pyridine ring plays a key role in enhancing the yield of the desired deoxygenated product. While ff OMe, OH, and NMe2 are all e ective as π-donor substituents on the central pyridine ring in the pincer, the highest conversion to products and the best selectivity was observed with OH ‑ substituents and added sodium carbonate as a base. Base serves to deprotonate the OH group and form 1O as observed spectroscopically. Furthermore, efforts to use other catalysts have revealed that free or labile sites are needed on the ruthenium center and an electronically rich and nonbulky CNC pincer is optimal. At low catalyst loadings (0.01 mol %), the OH-substituted catalyst 1OH in the presence of base serves as a homogeneous catalyst and is able to achieve quantitative and selective conversion of vanillyl alcohol to desired the HDO product, creosol, with up to 10000 turnovers.
    [Show full text]
  • Dinitrogen Coordination Chemistry: on the Biomimetic Borderlands
    Chem. Rev. 2004, 104, 385−401 385 Dinitrogen Coordination Chemistry: On the Biomimetic Borderlands Bruce A. MacKay* and Michael D. Fryzuk Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1 Received April 30, 2003 Contents comparisons to nitrogenase and the Haber-Bosch process are ubiquitous in the literature of transition 1. Introduction 385 metal dinitrogen complexes. Nitrogenase binds di- 1.1. On the Borderlands 385 nitrogen and other substrates, it reduces bound 1.2. Scope 386 substrates using electrons provided by other metal 2. Dinitrogen Chemistry 387 clusters, it allows for protonation of reduced N atoms, 2.1. Properties as a Ligand 387 it produces H2 as a reaction byproduct, and it releases 2.2. Metal−Dinitrogen Interactions 387 fixed nitrogen as ammonia. The mechanistic details 2.3. Current ParadigmssThe Chatt Cycle and 388 of this catalytic process remain unclear. Reductive Cleavage The most common nitrogenase enzyme employs an 3. Complexes of the Group 8 Metals 389 iron-molybdenum-sulfur cluster (the FeMo-cofac- 3.1. Iron 389 tor) as the principal catalytic agent at its active site.9 - 3.2. Ruthenium and Osmium 390 Although two other similar enzyme types (“iron 4. Complexes of the Group 6 Metals 391 vanadium” and “iron-only”, where Mo is replaced by V or Fe) are also known to exist,10 in this discussion 4.1. Chromium 391 “nitrogenase” refers to the common type. Extracted 4.2. Molybdenum and Tungsten 392 from purified protein with acid11 or from cellulose- 5. Complexes of the Group 5 Metals 395 bound protein with DMF or NMF after treatment 5.1.
    [Show full text]