RESEARCH ARTICLE Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis Dan Zhou, Xianmiao Liu, Yan Sun, Lei Ma, Bo Shen*, Changliang Zhu* Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China *
[email protected] (BS);
[email protected] (CZ) Abstract Anopheles sinensis is an important malaria vector in China and other Southeast Asian coun- tries, and the emergence of insecticide resistance in this mosquito poses a serious threat to the efficacy of malaria control programs. The recently published An. sinensis genome and OPEN ACCESS transcriptome provide an opportunity to understand the molecular mechanisms of insecti- cide resistance. Analysis of the An. sinensis genome revealed 174 detoxification genes, Citation: Zhou D, Liu X, Sun Y, Ma L, Shen B, Zhu C (2015) Genomic Analysis of Detoxification Supergene including 93 cytochrome P450s (P450s), 31 glutathione-S-transferases (GSTs), and 50 Families in the Mosquito Anopheles sinensis. PLoS choline/carboxylesterases (CCEs). The gene number was similar to that in An. gambiae, ONE 10(11): e0143387. doi:10.1371/journal. but represented a decrease of 29% and 42% compared with Aedes aegypti and Culex quin- pone.0143387 quefasciatus, respectively. The considerable contraction in gene number in Anopheles Editor: Xinghui Qiu, Institute of Zoology, Chinese mosquitoes mainly occurred in two detoxification supergene families, P450s and CCEs. Academy of Sciences, CHINA The available An. sinensis transcriptome was also re-analyzed to further identify key resis- Received: June 29, 2015 tance-associated detoxification genes. Among 174 detoxification genes, 124 (71%) were Accepted: November 4, 2015 detected. Several candidate genes overexpressed in a deltamethrin-resistant strain (DR- Published: November 20, 2015 strain) were identified as belonging to the CYP4 or CYP6 family of P450s and the Delta GST class.