Semibalanus Balanoides in Winter and Spring: Larval Concentration, Settlement, and Substrate Occupancy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Examining Patterns of Genetic Variation in Canadian Marine Molluscs Through DNA Barcodes
Examining patterns of genetic variation in Canadian marine molluscs through DNA barcodes by Kara Layton A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Integrative Biology Guelph, Ontario, Canada © Kara Layton, January, 2012 ABSTRACT Examining patterns of genetic variation in Canadian marine molluscs through DNA barcodes Kara Layton Advisor: University of Guelph, 2013 Professor P.D.N Hebert In this thesis I investigate patterns of sequence variation at the COI gene in Canadian marine molluscs. The research presented begins the construction of a DNA barcode reference library for this phylum, presenting records for nearly 25% of the Canadian fauna. This work confirms that the COI gene region is an effective tool for delineating species of marine molluscs and for revealing overlooked species. This study also discovered a link between GC content and sequence divergence between congeneric species. I also provide a detailed analysis of population structure in two bivalves with similar larval development and dispersal potential, exploring how Canada’s extensive glacial history has shaped genetic structure. Both bivalve species show evidence for cryptic taxa and particularly high genetic diversity in populations from the northeast Pacific. These results have implications for the utility of DNA barcoding both for documenting biodiversity and broadening our understanding of biogeographic patterns in Holarctic species. Acknowledgements Firstly, I would like to thank my advisor Dr. Paul Hebert for providing endless guidance and support during my program and for greatly improving my research. You always encouraged my participation in field collections and conferences, allowing many opportunities to connect with colleagues and present my research to the scientific community. -
Appendix 1 Table A1
OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S. -
Does the Acorn Barnacle Balanus Glandula Exhibit Predictable Gradients in Metabolic Performance Across the Intertidal Zone?
Warren J. Baker Endowment for Excellence in Project-Based Learning Robert D. Koob Endowment for Student Success FINAL REPORT Final reports will be published on the Cal Poly Digital Commons website(http://digitalcommons.calpoly.edu). I. Project Title Does the acorn barnacle Balanus glandula exhibit predictable gradients in metabolic performance across the intertidal zone? II. Project Completion Date 2/2019 III. Student(s), Department(s), and Major(s) (1) Kali Horn, Biological Sciences Department, M.S. Biological Sciences IV. Faculty Advisor and Department Kristin Hardy, Biological Sciences Department V. Cooperating Industry, Agency, Non-Profit, or University Organization(s) NA VI. Executive Summary Using funding from the Baker-Koob endowment, I successfully completed an experiment looking at metabolic variation in the common acorn barnacle, Balanus glandula, across tidal heights. We characterized the temperature profile across the zone as well to have data explicitly describing the abiotic variability from the upper intertidal zone to the low. Myself and many undergraduates collected barnacles from the top middle and bottom of the B.glandula distribution and ran the individuals through a suite of experiments to characterize the ‘metabolic phenotype’ . We defined the metabolic phenotype with a comprehensive suite of biochemical (e.g., citrate synthase and lactate dehydrogenase activity), physiological (VO2, aerobic scope) and behavioral (feeding rate) indices of metabolism. After removal from the intertidal zone, barnacles were placed in our intermittent respirometry system to calculate an average oxygen consumption rate over a 24h period. During the first two hours of the experiment, I conducted a behavioral observation to determine overall activity and feeding rate. -
Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs. -
Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Montagu's stellate barnacle (Chthamalus montagui) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Karen Riley 2002-01-28 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1322]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Riley, K. 2002. Chthamalus montagui Montagu's stellate barnacle. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1322.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2002-01-28 Montagu's stellate barnacle (Chthamalus montagui) - Marine Life Information Network See online review for distribution map Close up of Chthamalus montagui from High Water of Spring Tide level seen dry. -
Alien Marine Invertebrates of Hawaii
BARNACLE Balanus amphitrite (Darwin, 1854) Striped barnacle Phylum Arthropoda Subphylum Crustacea Class Maxillopoda Subclass Cirripedia Order Thoracica Family Balanidae Photo by R. DeFelice DESCRIPTION HABITAT Balanus amphitrite is a small, conical, sessile barnacle Very common in the intertidal fouling communities of (to about 1.5 cm diameter). Color is whitish with purple harbors and protected embayments. The live attached to or brown longitudinal stripes. Surface of test plates are any available hard surface, including rocks, pier pilings, longitudinally ribbed. The interlocking tergum and ship hull, oyster shells, and mangrove roots. scutum, the paired structures which cover the animal inside are as pictured below. A similar species, Balanus reticulatus Utinomi, is also an introduced species and commonly occurs with B. amphitrite. It also has longitudinal purple or brown stripes, but these stripes are intersected by horizontal grooves, giving the surface of the test plates a rough reticulated striation, unlike B. amphitrite. It can also be distinguished by examination of the tergum and scutum pictured below. Note the more sharply pointed apex of the tergum and the elongated and narrower tergum spur Balanus retculatus. (A) Scutum. (B) Tergum. of B. reticulatus. DISTRIBUTION HAWAIIAN ISLANDS Throughout the main Hawaiian Islands NATIVE RANGE Southwestern Pacific and Indian Ocean PRESENT DISTRIBUTION World-wide in warm and temperate seas spur MECHANISM OF INTRODUCTION Balanus amphitrite. (A) Scutum. (B) Tergum. Unintentional, as fouling on ships hulls © Hawaii Biological Survey 2001 B-35 Balanus amphitrite IMPACT REMARKS Barnacles are a serious fouling problem on ship bot- This now widespread barnacle of southern hemisphere toms, buoys, and pilings. The ecological impact of this origins was first collected in 1902 in Honolulu Harbor. -
Balanus Trigonus
Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Settlement of the barnacle Balanus trigonus BRAZILIAN CRUSTACEAN SOCIETY Darwin, 1854, on Panulirus gracilis Streets, 1871, in western Mexico e-ISSN 2358-2936 www.scielo.br/nau 1 orcid.org/0000-0001-9187-6080 www.crustacea.org.br Michel E. Hendrickx Evlin Ramírez-Félix2 orcid.org/0000-0002-5136-5283 1 Unidad académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. A.P. 811, Mazatlán, Sinaloa, 82000, Mexico 2 Oficina de INAPESCA Mazatlán, Instituto Nacional de Pesca y Acuacultura. Sábalo- Cerritos s/n., Col. Estero El Yugo, Mazatlán, 82112, Sinaloa, Mexico. ZOOBANK http://zoobank.org/urn:lsid:zoobank.org:pub:74B93F4F-0E5E-4D69- A7F5-5F423DA3762E ABSTRACT A large number of specimens (2765) of the acorn barnacle Balanus trigonus Darwin, 1854, were observed on the spiny lobster Panulirus gracilis Streets, 1871, in western Mexico, including recently settled cypris (1019 individuals or 37%) and encrusted specimens (1746) of different sizes: <1.99 mm, 88%; 1.99 to 2.82 mm, 8%; >2.82 mm, 4%). Cypris settled predominantly on the carapace (67%), mostly on the gastric area (40%), on the left or right orbital areas (35%), on the head appendages, and on the pereiopods 1–3. Encrusting individuals were mostly small (84%); medium-sized specimens accounted for 11% and large for 5%. On the cephalothorax, most were observed in branchial (661) and orbital areas (240). Only 40–41 individuals were found on gastric and cardiac areas. Some individuals (246), mostly small (95%), were observed on the dorsal portion of somites. -
The Interplay of Positive and Negative Influences
Journal of Experimental Marine Biology and Ecology 448 (2013) 162–170 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Effects of seaweed canopies and adult barnacles on barnacle recruitment: The interplay of positive and negative influences Arne J. Beermann a, Julius A. Ellrich a, Markus Molis b, Ricardo A. Scrosati a,⁎ a Saint Francis Xavier University, Department of Biology, Antigonish, Nova Scotia B2G 2W5, Canada b Alfred Wegener Institute for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany article info abstract Article history: Barnacles are dominant sessile invertebrates on many rocky shores worldwide. Hence, investigating the factors Received 15 February 2013 that affect their recruitment is important. Through field experiments done on the Atlantic coast of Canada, we Received in revised form 30 June 2013 investigated interspecificandintraspecific relationships affecting intertidal barnacle recruitment. Specifically, Accepted 1 July 2013 we evaluated the effects of seaweed canopies (Ascophyllum nodosum) and adult barnacles (Semibalanus Available online xxxx balanoides) on the density of barnacle recruits at the end of the recruitment season. The effects of three canopy treatments on barnacle recruitment and understory environmental conditions allowed us to identify positive Keywords: Ascophyllum and negative effects of canopies. At mid-intertidal elevations subjected to a moderate wave action, we found Barnacle that, during high tides, the flexible algal fronds damage wire sensors established on the substrate (whiplash Intertidal effect) and limit barnacle recruitment. However, at low tide, algal canopies limit water loss and temperature Seaweed extremes and enhance barnacle recruitment in understory habitats. -
Response of Competent Blue Mussel (Mytilus Edulis) Larvae to Positive and Negative Settlement Cues
Journal of Experimental Marine Biology and Ecology 480 (2016) 8–16 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Response of competent blue mussel (Mytilus edulis) larvae to positive and negative settlement cues Scott L. Morello ⁎, Philip O. Yund The Downeast Institute, P.O. Box 83, Beals, ME 04611, USA article info abstract Article history: Recent work on larval settlement cues has emphasized mechanisms by which larvae exploit individual, positive Received 3 December 2015 cues (cues that larvae move toward), often in complex flow fields. Yet in natural systems, larvae of habitat Received in revised form 28 March 2016 generalists probably respond to multiple settlement cues, including a mixture of positive and negative cues. Accepted 29 March 2016 First, a simple test chamber in which cue dispersal was dominated by diffusion was used to assess whether com- Available online xxxx petent blue mussel (Mytilus edulis) larvae responded negatively or positively to cues from a variety of intertidal fl Keywords: species. Second, choice experiments tested the responses of larvae offered a mixture of con icting (positive and fl Larval behavior negative) cues from the same direction and con icting cues from different directions. Responses to individual Chemical ecology cues were predictable from established ecological interactions. Larvae were attracted to odors from conspecifics, Habitat selection tended to move toward odors from a filamentous alga, avoided odors from two predators of post-settlement Future risk mussels, and exhibited little response to odors from an herbivorous gastropod. Negative and positive cues offered Conflicting cues from the same direction produced movement both toward and away from the mixture, while offering the combined cues from different directions resulted in net movement that was largely consistent with predictions from the individual cue responses. -
Do Storms Trigger Synchronous Larval Release in Semibalanus Balanoides?
Mar Biol (2011) 158:1581–1589 DOI 10.1007/s00227-011-1671-1 ORIGINAL PAPER High-frequency observations of early-stage larval abundance: do storms trigger synchronous larval release in Semibalanus balanoides? Joanna Gyory • Jesu´s Pineda Received: 12 April 2010 / Accepted: 10 March 2011 / Published online: 24 March 2011 Ó Springer-Verlag 2011 Abstract The acorn barnacle, Semibalanus balanoides,is balanoides (L.) is among the coastal marine invertebrates thought to release larvae in response to phytoplankton that reproduce synchronously. It is a highly abundant, boreo- blooms, but there is evidence that another, unidentified cue arctic barnacle species found on rocky intertidal zones along for release may exist. We conducted high-frequency sam- the eastern and western coasts of North America and the pling in Little Harbor, Massachusetts, USA, to determine northwestern coast of Europe. It reproduces once per year in whether early-stage larval abundance was related to several the winter or spring. Within a population, planktonic larvae environmental variables, and to characterize vertical dis- are released in one or more bursts, and the release period tributions of the larvae. Larval concentrations peaked at generally ends in less than 2 weeks (Barnes 1956; Crisp 2.52 and 1.02 individuals l-1 during two storms. Larvae 1959; Lang and Ackenhusen–Johns 1981; Pineda et al. were more abundant near the surface than near the bottom. 2004). The larvae can constitute 15% of zooplankton in We suggest the hypothesis that turbid conditions and coastal waters of the northeastern United States (Frolander upward-swimming behavior may protect newly-released 1955), but their pervasiveness is limited, since the planktonic larvae from predation and cannibalism. -
A Checklist of Turtle and Whale Barnacles
Journal of the Marine Biological Association of the United Kingdom, 2013, 93(1), 143–182. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S0025315412000847 A checklist of turtle and whale barnacles (Cirripedia: Thoracica: Coronuloidea) ryota hayashi1,2 1International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan, 2Marine Biology and Ecology Research Program, Extremobiosphere Research Center, Japan Agency for Marine–Earth Science and Technology A checklist of published records of coronuloid barnacles (Cirripedia: Thoracica: Coronuloidea) attached to marine vertebrates is presented, with 44 species (including 15 fossil species) belonging to 14 genera (including 3 fossil genera) and 3 families recorded. Also included is information on their geographical distribution and the hosts with which they occur. Keywords: checklist, turtle barnacles, whale barnacles, Chelonibiidae, Emersoniidae, Coronulidae, Platylepadidae, host and distribution Submitted 10 May 2012; accepted 16 May 2012; first published online 10 August 2012 INTRODUCTION Superorder THORACICA Darwin, 1854 Order SESSILIA Lamarck, 1818 In this paper, a checklist of barnacles of the superfamily Suborder BALANOMORPHA Pilsbry, 1916 Coronuloidea occurring on marine animals is presented. Superfamily CORONULOIDEA Newman & Ross, 1976 The systematic arrangement used herein follows Newman Family CHELONIBIIDAE Pilsbry, 1916 (1996) rather than Ross & Frick (2011) for reasons taken up in Hayashi (2012) in some detail. The present author Genus Chelonibia Leach, 1817 deems the subfamilies of the Cheonibiidae (Chelonibiinae, Chelonibia caretta (Spengler, 1790) Emersoniinae and Protochelonibiinae) proposed by Harzhauser et al. (2011), as well as those included of Ross & Lepas caretta Spengler, 1790: 185, plate 6, figure 5. -
Macro-To-Nanoscale Investigation of Wall-Plate Joints in the Acorn Barnacle Semibalanus Balanoides
This is a repository copy of Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides : correlative imaging, biological form and function, and bioinspiration. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/161302/ Version: Published Version Article: Mitchell, R.L. orcid.org/0000-0002-6328-3998, Coleman, M., Davies, P. et al. (5 more authors) (2019) Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides : correlative imaging, biological form and function, and bioinspiration. Journal of The Royal Society Interface, 16 (157). 20190218. ISSN 1742-5689 https://doi.org/10.1098/rsif.2019.0218 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle royalsocietypublishing.org/journal/rsif Semibalanus balanoides: correlative imaging, biological form and function, Research and bioinspiration Cite this article: Mitchell RL, Coleman M, R. L. Mitchell1, M. Coleman1, P. Davies1, L. North1, E. C. Pope2, Davies P, North L, Pope EC, Pleydell-Pearce C, C.