A Volcanic Issue

Total Page:16

File Type:pdf, Size:1020Kb

A Volcanic Issue 1111 2 A volcanic issue – lessons 3 4 learned in Goma 5 6 7 Aranka Anema and Jean-François Fesselet 8 9 10 1 When Mount Nyiragongo erupted in 2002 it sent lava 2 through the town of Goma and into Lake Kivu. Relief 3 operations focused on how to treat biological pollution 4 in water from Lake Kivu and to manage the water’s 5 chemical contamination from lava flows. Either form of 6 contamination would have been less of a problem if 7 lessons learned from earlier eruptions had been more 8 readily available. 9 20111 ount Nyiragongo in the water sources and unhygienic living that lava flow into the lake would 1 Democratic Republic of conditions. destabilize the gases and cause either a 2 M Congo is one of Africa’s fatal explosion resulting from methane 3 most active volcanoes. On 17 January Chemical and biological or the spread of lethal low-lying carbon 4 2002 Nyiragongo erupted, sending lava contamination dioxide, as happened by Lake Nyos 5 across the town of Goma 10km away in Cameroon in 1986. In addition to 6 into Lake Kivu. Goma has a population Lake Kivu is the only source of water disquiet over the destabilization of 7 of approximately 400 000. Years of for drinking, cooking and hygiene in carbon dioxide and methane in the 8 conflict, displacement and poverty have Goma and the surrounding areas. lake, specialists were concerned about 9 rendered Goma’s population particu- During the crisis, humanitarian agen- two other key water supply issues: the 30 larly vulnerable to disease and mal- cies became concerned that the water lake’s fluoride pollution and the threat 1 nutrition. Chief causes of mortality would not be safe for consumption of a cholera outbreak. Water quality 2 include malaria, measles, tuberculosis owing to chemical contamination. assessments and appropriate disinfec- 3 and diarrhoeal diseases. Epidemics such Following lava flows into the lake, tion techniques were considered crucial 4 as cholera, meningitis, dysentery and vulcanologists and water and sanitation to avoid wide-scale loss of life. 5 bubonic plague are frequent. Water and specialists noticed that the temperature Many factors must be taken into con- 6 sanitation infrastructure and health ser- of the lake had risen in localized areas sideration during assessments of water 7 vices in Goma are limited, and largely and was releasing large amounts of gas. quality, such as source protection, treat- 8 supported by external aid agencies. Dead fish floated to the surface, and ment efficiency and reliability, and 9 Because Goma’s health situation is flames reportedly glowed above the protection of the distribution network. 40111 already precarious, volcanic eruptions water. Vulcanologists studying Mount Water quality can be affected by 1 can easily prompt medical crises. In Nyiragongo have long known that Lake organic faecal pollution (e.g. bacteria, 2 1977 lava flow from Mount Nyiragongo Kivu holds large amounts of carbon viruses, protozoan pathogens, helminth 3 killed more than 2000 residents. In 1994 dioxide and methane. Scientists feared parasites, etc.), suspended matter 4 conflict and displacement triggered 5 cholera and dysentery epidemics, result- 6 ing in 50 000 deaths. 1 The eruption in 7 January 2002 led to the displacement of 8 over 300 000 to Rwanda and neighbour- 9 ing areas. Lava flows destroyed an esti- 50 mated 13 per cent of the town, including 1 water supply and electricity systems, 2 local health centres, hospitals, local resi- 3 dences and foreign aid offices. Goma’s 4 population suffered dehydration, res- 5 piratory and ocular infections, burns, 6 ionizing radiation and mental health 7 disorders as a consequence of the 8 eruption and subsequent displacement. 9 Risks of morbidity and mortality were 60111 heightened by the uncertain quality of Houses were submerged by the lava ows Vol. 21 No. 4 April 2002 9 household water security 1111 (e.g. mineral solids, algae, protozoa, monitoring. This is particularly the case 2 bilharzia cercaria, etc.), acid and alka- for bucket chlorination. 3 line substances, toxic metals, pesticides Standard protocol for chlorine treat- 4 and nitrates, and concentrations of salts. ment calls for the preparation of a 1% 5 Of these, faecal pollution is generally chlorine stock solution, which is then 6 considered the most severe since it can mixed with raw water. An FRC of 7 lead to rapid and widespread outbreaks 0.2–0.5 mg/l of chlorine is considered 8 of communicable infectious diseases necessary in emergency settings in order 9 and mortality. to prevent possible recontamination 10 (e.g. during handling). Water pH levels 1 Cholera control and are known to influence the effectiveness 2 chlorination of chlorine disinfection, and chlorine 3 dosages must be modified according to 4 Drainage systems in Goma were badly pH levels; water with a high pH requires 5 damaged by the lava flows. Heavy rain- a higher FRC (0.4–1 mg/l). Lake Kivu 6 falls caused water pooling, flooding and has always had a high pH (8.5). Moni- 7 risks of associated faecal-oral diseases. toring local chlorination procedures 8 Cholera (infectious Vibrio cholerae ) has revealed that treated water did not have 9 been endemic in Goma for years; it is any FRC, either due to incorrect dilution 20111 transmitted through the ingestion of fae- procedures, a lack of monitoring equip- 1 cally contaminated food or water, and is ment or insufficient training. Local staff 2 preventable through a safe water supply had not always been properly trained 3 and hygiene measures. about assessment and monitoring tech- Chlorination requires properly trained staff and regular monitoring 4 The International Committee of the niques, and the need for regular modifi- 5 Red Cross (ICRC) had provided a local cations of chlorine content. Chlorination 6 water and sanitation NGO, Ami-Kuvi, points around the lake were using a 0.1 drastic increase to 4.0 mg/l. It is sup- 7 with training, finances and equipment per cent stock solution, rendering the posed that volcanic lava and acidic 8 in the past. During the crisis, Médecins treatment totally ineffective. The combi- ash affect the pH content of water and 9 Sans Frontières (MSF) began to collab- nation of poor chlorination techniques cause fluoride contamination. However, 30 orate with Ami-Kuvi (under agreement and the fact that infectious Vibrio scientific knowledge about the relation- 1 with ICRC) to monitor, train and cholerae proliferates in waters with high ship between lava, acidic ash and fresh 2 expand the NGO’s activities and to pH greatly heightened the risk of water toxicity are inconclusive, and the 3 ensure a safe water supply to Goma’s cholera outbreak. extent to which chemical modification 4 population. This involved the establish- In addition to concerns about cholera of water high in fluoride could be 5 ment of new chlorination points next prevention, WATSAN experts were also harmful to populations in the short 6 to the lake, and the rehabilitation preoccupied with the chemical (i.e. fluo- term is unclear. Water and sanitation 7 and monitoring of long-standing ones. ride) contamination of Lake Kivu. specialists working in Goma discussed 8 Trained staff performed bucket chlorin- several options: forbid everyone to 9 ation (i.e. on-site injection of chlorine Fluoride contamination drink water from Lake Kivu (unrealis- 40111 proportional to the capacity of individ- tic, given it is Goma’s only water 1 ual water containers). The World Health Organisation (WHO) source); allow everyone to drink lake 2 Chlorine is considered appropriate stipulates 1.5 mg/l as the safe level of water in spite of high fluoride content; 3 for the disinfection of water in fluoride content in drinking water. or treat the water with appropriate 4 emergency situations since it is power- Concentrations above 2 mg/l have been defluorination techniques. 5 ful enough to kill all viral and bacterial associated with the mottling of tooth Over a few days, water samples 6 pathogens. In order for disinfection to enamel (dental fluorosis) and concen- were taken at regular intervals and sent 7 be successful, however, it is imperative trations greater than 4 mg/l with joint to Rwanda for analysis. In the 8 that sufficient amounts of chlorine be problems and skeletal deformities. meantime, WATSAN specialists from 9 used. Chlorine is absorbed by oxidiz- Populations in hot climates are consid- humanitarian agencies held daily meet- 50 able substances present in water, such ered particularly at risk, since fluoride ings to exchange assessment findings 1 as organic matter, minerals, pathogens, concentrations in water are increased and discuss possible options. The most 2 etc. The effectiveness of chlorination is by evaporation. Furthermore, local diets frequently employed fluoride removal 3 dependent on the presence of the Free may already be rich in fluoride or nutri- techniques include ion adsorption 4 Residual Chlorine (FRC), and water tionally deficient. 2 (using activated alumnia or charred 5 quality must be assessed daily, or even Fluoride concentrations in Lake bone meal) and coagulation (using alu- 6 hourly, in order to adapt chlorine Kivu have always been slightly higher minium sulphate). Full-scale activated 7 dosages appropriately. Chlorination than the WHO recommendation, at alumnia facilities and household deflu- 8 requires good logistics (i.e. reliable 1.6 mg/l. A water sample taken by oridators using charred bone meal have 9 chlorine product, appropriate storage, Goma’s water control board a few been shown to decrease fluoride levels 60111 etc.), properly trained staff and regular days after the eruption revealed a from 5–8 mg/l to less than 1 mg/l. 3 10 Vol. 21 No. 4 April 2002 household water security 1111 employ new staff.
Recommended publications
  • Human Health and Vulnerability in the Nyiragongo Volcano Crisis Democratic Republic of Congo 2002
    Human Health and Vulnerability in the Nyiragongo Volcano Crisis Democratic Republic of Congo 2002 Final Report to the World Health Organisation Dr Peter J Baxter University of Cambridge Addenbrooke’s Hospital Cambridge, UK Dr Anne Ancia Emergency Co-ordinator World Health Organisation Goma Nyiragongo Volcano with Goma on the shore of Lake Kivu Cover : The main lava flow which shattered Goma and flowed into Lake Kivu Lava flows from the two active volcanoes CONGO RWANDA Sake Munigi Goma Lake Kivu Gisenyi Fig.1. Goma setting and map of area and lava flows HUMAN HEALTH AND VULNERABILITY IN THE NYIRAGONGO VOLCANO CRISIS DEMOCRATIC REPUBLIC OF CONGO, 2002 FINAL REPORT TO THE WORLD HEALTH ORGANISATION Dr Peter J Baxter University of Cambridge Addenbrooke’s Hospital Cambridge, UK Dr Anne Ancia Emergency Co-ordinator World Health Organisation Goma June 2002 1 EXECUTIVE SUMMARY We have undertaken a vulnerability assessment of the Nyiragongo volcano crisis at Goma for the World Health Organisation (WHO), based on an analysis of the impact of the eruption on January 17/18, 2002. According to volcanologists, this eruption was triggered by tectonic spreading of the Kivu rift causing the ground to fracture and allow lava to flow from ground fissures out of the crater lava lake and possibly from a deeper conduit nearer Goma. At the time of writing, scientists are concerned that the continuing high level of seismic activity indi- cates that the tectonic rifting may be gradually continuing. Scientists agree that volcano monitoring and contingency planning are essential for forecasting and responding to fu- ture trends. The relatively small loss of life in the January 2002 eruption (less than 100 deaths in a population of 500,000) was remarkable, and psychological stress was reportedly the main health consequence in the aftermath of the eruption.
    [Show full text]
  • "A Revision of the Freshwater Crabs of Lake Kivu, East Africa."
    Northern Michigan University NMU Commons Journal Articles FacWorks 2011 "A revision of the freshwater crabs of Lake Kivu, East Africa." Neil Cumberlidge Northern Michigan University Kirstin S. Meyer Follow this and additional works at: https://commons.nmu.edu/facwork_journalarticles Part of the Biology Commons Recommended Citation Cumberlidge, Neil and Meyer, Kirstin S., " "A revision of the freshwater crabs of Lake Kivu, East Africa." " (2011). Journal Articles. 30. https://commons.nmu.edu/facwork_journalarticles/30 This Journal Article is brought to you for free and open access by the FacWorks at NMU Commons. It has been accepted for inclusion in Journal Articles by an authorized administrator of NMU Commons. For more information, please contact [email protected],[email protected]. This article was downloaded by: [Cumberlidge, Neil] On: 16 June 2011 Access details: Access Details: [subscription number 938476138] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of Natural History Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713192031 The freshwater crabs of Lake Kivu (Crustacea: Decapoda: Brachyura: Potamonautidae) Neil Cumberlidgea; Kirstin S. Meyera a Department of Biology, Northern Michigan University, Marquette, Michigan, USA Online publication date: 08 June 2011 To cite this Article Cumberlidge, Neil and Meyer, Kirstin S.(2011) 'The freshwater crabs of Lake Kivu (Crustacea: Decapoda: Brachyura: Potamonautidae)', Journal of Natural History, 45: 29, 1835 — 1857 To link to this Article: DOI: 10.1080/00222933.2011.562618 URL: http://dx.doi.org/10.1080/00222933.2011.562618 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • Living Lakes Goals 2019 - 2024 Achievements 2012 - 2018
    Living Lakes Goals 2019 - 2024 Achievements 2012 - 2018 We save the lakes of the world! 1 Living Lakes Goals 2019-2024 | Achievements 2012-2018 Global Nature Fund (GNF) International Foundation for Environment and Nature Fritz-Reichle-Ring 4 78315 Radolfzell, Germany Phone : +49 (0)7732 99 95-0 Editor in charge : Udo Gattenlöhner Fax : +49 (0)7732 99 95-88 Coordination : David Marchetti, Daniel Natzschka, Bettina Schmidt E-Mail : [email protected] Text : Living Lakes members, Thomas Schaefer Visit us : www.globalnature.org Graphic Design : Didem Senturk Photographs : GNF-Archive, Living Lakes members; Jose Carlo Quintos, SCPW (Page 56) Cover photo : Udo Gattenlöhner, Lake Tota-Colombia 2 Living Lakes Goals 2019-2024 | Achievements 2012-2018 AMERICAS AFRICA Living Lakes Canada; Canada ........................................12 Lake Nokoué, Benin .................................................... 38 Columbia River Wetlands; Canada .................................13 Lake Ossa, Cameroon ..................................................39 Lake Chapala; Mexico ..................................................14 Lake Victoria; Kenya, Tanzania, Uganda ........................40 Ignacio Allende Reservoir, Mexico ................................15 Bujagali Falls; Uganda .................................................41 Lake Zapotlán, Mexico .................................................16 I. Lake Kivu; Democratic Republic of the Congo, Rwanda 42 Laguna de Fúquene; Colombia .....................................17 II. Lake Kivu; Democratic
    [Show full text]
  • The Tragedy of Goma Most Spectacular Manifestation of This Process Is Africa’S Lori Dengler/For the Times-Standard Great Rift Valley
    concentrate heat flowing from deeper parts of the earth like a thicK BlanKet. The heat eventually causes the plate to bulge and stretch. As the plate thins, fissures form allowing vents for hydrothermal and volcanic activity. The Not My Fault: The tragedy of Goma most spectacular manifestation of this process is Africa’s Lori Dengler/For the Times-Standard Great Rift Valley. Posted June 6, 2021 https://www.times-standard.com/2021/06/06/lori- In Africa, we are witnessing the Birth of a new plate dengler-the-tragedy-of-goma/ boundary. Extensional stresses from the thinning crust aren’t uniform. The result is a number of fissures and tears On May 22nd Mount Nyiragongo in the Democratic oriented roughly north south. The rifting began in the Afar RepuBlic of the Congo (DRC) erupted. Lava flowed towards region of northern Ethiopia around 30 million years ago the city of Goma, nine miles to the south. Goma, a city of and has slowly propagated to the south at a rate of a few 670,000 people, is located on the north shore of Lake Kivu inches per year and has now reached MozamBique. In the and adjacent to the Rwanda border. Not all of the details coming millennia, the rifts will continue to grow, eventually are completely clear, but the current damage tally is 32 splitting Ethiopia, Kenya, Tanzania and much of deaths, 1000 homes destroyed, and nearly 500,000 people Mozambique into a new small continent, much liKe how displaced. Madagascar Began to Be detached from the main African continent roughly 160 million years ago.
    [Show full text]
  • Species Diversity of Pelagic Algae in Lake Kivu (East Africa)
    Cryptogamie,Algol., 2007, 28 (3): 245-269 © 2007 Adac. Tous droits réservés Species diversity of pelagic algae in Lake Kivu (East Africa) Hugo SARMENTO a,b*, MariaLEITAO b , MayaSTOYNEVA c , PierreCOMPÈRE d ,Alain COUTÉ e ,MwapuISUMBISHO a,f &Jean-PierreDESCY a a Laboratory of Freshwater Ecology, URBO, Department of Biology, University of Namur,B-5000 Namur,Belgium b Bi-Eau,F-4900 Angers,France c Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, 1164 Sofia, Bulgaria d Jardin Botanique National de Belgique,B-1860 Meise,Belgium e Muséum d’Histoire Naturelle de Paris,Département RDDM, CP 39, 57 rue Cuvier,F-75231 Paris Cedex 05,France f Institut Supérieur Pédagogique de Bukavu, UERHA, Bukavu,D. R. of Congo (Received 24 April 2006, accepted 29 August 2006) Abstract – With regard to pelagic algae, Lake Kivu is the least known among the East- African Great Lakes. The data available on its phytoplanktic communities are limited, dispersed or outdated. This study presents floristic data obtained from the first long term monitoring survey ever made in Lake Kivu (over two and a half years). Samples were collected twice a month from the southern basin, and twice a year (once in each season) from the northern, eastern and western basins. In open lake habitats, the four basins presented similar species composition. The most common species were the pennate diatoms Nitzschia bacata Hust. and Fragilaria danica (Kütz.) Lange-Bert., and the cyanobacteria Planktolyngbya limnetica Lemm. and Synechococcus sp. The centric diatom Urosolenia sp. and the cyanobacterium Microcystis sp. were also very abundant, mostly near the surface under daily stratification conditions.
    [Show full text]
  • Lake Nyos Dam Assessment
    Lake Nyos Dam Assessment Cameroon, September 2005 Joint UNEP/OCHA Environment Unit United Nations Office for the United Nations Coordination of Humanitarian Affairs Environment Programme (OCHA) (UNEP) Published in Switzerland, October 2005 by the Joint UNEP/OCHA Environment Unit Copyright © 2005 Joint UNEP/OCHA Environment Unit This publication may be reproduced in whole or in part and in any form for educational or not-for-profit purposes without special permission from the copyright holder, provided acknowledgement is made of the source. Joint UNEP/OCHA Environment Unit Palais des Nations CH-1211 Geneva 10 Switzerland Tel. +41 (0) 22 917 3484 - Fax +41 (0) 22 917 0257 http://ochaonline.un.org/ochaunep The assessment was made possible through the kind assistance of the Ministry of Foreign Affairs and the Ministry of Transport, Public Works and Water Management of The Netherlands. Mission team: Ms. Nisa Nurmohamed Mr. Olaf van Duin Road and Hydraulic Engineering Institute Ministry of Transport, Public Works and Water Management The Netherlands Report Coordinator: René Nijenhuis, Joint UNEP/OCHA Environment Unit Photos: Nisa Nurmohamed, Olaf van Duin. Cover: Overview of Lake Nyos, Cameroon 2 Table of Contents 1. Executive summary 4 2. Introduction 5 3. Current situation of the dam 6 4. Carbon dioxide in Lake Nyos 7 5. Displacement of affected people 8 6. Suggested approaches 8 7. Lake Nyos Mitigation Project 9 8. Timeframe and costs 11 References and acknowledgements 13 Annex 1: Mission logbook 14 Annex 2: Carbon dioxide in Lake Nyos 16 3 Executive summary Upon request from the Ministry of Territorial Administration and Decentralization of Cameroon, the Joint UNEP/OCHA Environment Unit deployed of an assessment mission to assess the stability of he natural dam in Lake Nyos, Cameroon.
    [Show full text]
  • Africa Lakes (31-May-06).Indd
    Fires Near Lake Malawi, Africa This image of southeastern Africa, ac- quired on 25 September 2004, shows scores of fi res burning in Mozambique south of Lake Malawi, whose southern tip is at the top center of the image. Active fi re detec- tions are marked in red. The fi res created a layer of smoke that darkened the surface of the land beneath it. At upper left in the im- age, the turquoise-colored body of water is the Lake Cahora Basa, created by a dam on the Zambezi River just inside Mozambique after the river leaves its course along the border of Zambia and Zimbabwe (NASA 2004). 3.2 Images of Change: surfaces, which spans the past 30 years and and forests, croplands, grasslands and ur- continues today. ban areas around the lakes. Africa’s Lakes By comparing two images of the same Changes seen in pairs of satellite images Various types of ground-based instruments, area taken 10, 20 or even 30 years apart, it should serve as a call to action. While some together with in situ surveys and analyses, is often easy to see human and naturally-in- are positive changes, many more are nega- can be used to measure the changes be- duced changes in a specifi c location. There tive. They are warning signs, which should ing brought about on the Earth through are very few places remaining on the planet prompt us to ask some serious questions human activities and global changes. But that do not show at least some impact from about our impact on these vital freshwater such changes can also be observed in more people’s activities.
    [Show full text]
  • Lake Kivu Aquatic Ecology Series 5 Editor: Jef Huisman, the Netherlands
    Lake Kivu Aquatic Ecology Series 5 Editor: Jef Huisman, The Netherlands For further volumes: http://www.springer.com/series/5637 Jean-Pierre Descy • François Darchambeau Martin Schmid Editors Lake Kivu Limnology and biogeochemistry of a tropical great lake Editors Jean-Pierre Descy François Darchambeau Research Unit in Environmental Chemical Oceanography Unit and Evolutionary Biology University of Liège Department of Biology Allée du 6-Août 17 University of Namur B-4000 Liège, Belgium Rue de Bruxelles 61 B-5000 Namur, Belgium Martin Schmid Surface Waters - Research and Management Eawag: Swiss Federal Institute of Aquatic Science and Technology Seestrasse 79 CH-6047 Kastanienbaum Switzerland ISBN 978-94-007-4242-0 ISBN 978-94-007-4243-7 (eBook) DOI 10.1007/978-94-007-4243-7 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012937795 © Springer Science+Business Media B.V. 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • 1 LAKE KIVU and ITS GAS 09-05-2016 Kigali Lake Kivu and Gas Extraction. Tell Us More. to Inform the Technically Interested Read
    LAKE KIVU AND ITS GAS 09-05-2016 Kigali Lake Kivu and Gas Extraction. Tell us more. To inform the technically interested readers in Rwanda we set out to describe some basics of Lake Kivu and its gas. Our focus is mainly on the extraction and we often run into people who have questions. Nothing of the knowledge we have accumulated is secret and we are happy to share that with you. Some of what we present may be over simplified as to reach a wide audience. Often people ask about Lake Kivu and then assume that the gas of Lake Kivu is drilled for and extracted from under the Lake. Or they ask or wonder how dangerous is Lake Kivu, if the Lake will explode. Other questions are about the gas extraction and if such is dangerous. A unique and situation, even NASA shares their satellite images of the Lake. We can safely say that Lake Kivu is carefully monitored by experts and scientists. The gas extraction, which currently takes place in the lake, is a unique technological application of engineering and physics. It offers a good economic opportunity to Rwanda and DRC if done well. All operators are monitored by the Lake Kivu Monitoring Programme. From that background the above questions are answered using the knowledge available to date. However, it is always to be remembered that gas extraction is unique in the world. In addition, some scientists qualify Lake Kivu as a living laboratory. More researches need to be done to have a better understanding of the Lake’s behaviour.
    [Show full text]
  • Goma Reached by Lava of Mount Nyiragongo, Decade Volcano
    Sentinel Vision EVT-875 Goma reached by lava of Mount Nyiragongo, decade 27 May 2021 volcano, DRC Sentinel-2 MSI acquired on 01 June 2020 at 08:06:11 UTC Sentinel-1 CSAR IW acquired on 13 May 2021 at 16:21:09 UTC Sentinel-5P TROPOMI SO2 acquired on 23 May 2021 at 11:10:2 3 UTC Sentinel-1 CSAR IW acquired on 25 May 2021 at 16:21:10 UTC Sentinel-2 MSI acquired on 27 May 2021 at 08:06:11 UTC 3D Layerstack Author(s): Sentinel Vision team, VisioTerra, France - [email protected] Keyword(s): Emergency, natural disaster, volcano, lava flow, atmosphere, urban planning, Democratic Republic of Congo, East African Rift, Great Rift Valley Fig. 1 - S5P TROPOMI (23.05.2021) - SO2 total column - Sulfur dioxyde emissions one day after the eruption started. 2D view Listed among the decade volcanoes, The Nyiragongo volcano is considered one of the most dangerous in the World. It lies 10 km from Goma and its two millions inhabitants and very close to Lake Kivu and its dissolved gasses. On 22 May 2021, it was reported that the volcano was erupting again. The Smithsonian Institution details: "At around 18:15 on 22 May seismicity at Nyiragongo spiked, around the same time observers reported at least two fissures opening on the lower Southern flanks, North-West of Kibati (8 km South-South-East) and Rukoko (10 km South). Lava from the first fissure, originating near the Shaheru crater, flowed East over a major road (N2) and then South. The second fissure produced lava flows that traveled South, overtaking and setting fire to many houses and structures in communities north of Goma, just West of Monigi (12 km South).
    [Show full text]
  • Gas Buildup in Lake Nyos, Cameroon: the Recharge Process and Its Consequences
    Applied Geochemistry,Vol. 8, pp. 207-221, 1993 Pergamon Press Ltd Printed in Great Britain Gas buildup in Lake Nyos, Cameroon: The recharge process and its consequences W. C. EVANS U.S. Geological Survey, Menlo Park, CA 94025, U.S.A. G. W. KLING Department of Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A. M. L. TUTTLE U.S. Geological Survey, Denver, CO 80225, U.S.A. G. TANYILEKE Institute for Geological and Mining Research, Yaounde B.P. 4110, Cameroon and L. D. WHITE U.S. Geological Survey, Menlo Park, CA 94025, U.S.A. (Received 31 December 1991; accepted in revised form 12 August 1992) Abstract--The gases dissolved in Lake Nyos, Cameroon, were quantified recently (December 1989 and September 1990) by two independent techniques: in-situ measurements using a newly designed probe and laboratory analyses of samples collected in pre-evacuated stainless steel cylinders. The highest concen- trations of CO2 and CH4 were 0.30 mol/kg and 1.7 mmol/kg, respectively, measured in cylinders collected 1 m above lake bottom. Probe measurements of in-situ gas pressure at three different stations showed that horizontal variations in total dissolved gas were negligible. Total dissolved-gas pressure near the lake bottom is 1.06 MPa (10.5 atm), 50% as high as the hydrostatic pressure of 2.1 MPa (21 atm). Comparing the CO 2 profile constructed from the 1990 data to one obtained in May 1987 shows that CO2 concentrations have increased at depths below 150 m. Based on these profiles, the average rate of COz input to bottom waters was 2.6 x 10~ mol/a.
    [Show full text]
  • Pleistocene Desiccation in East Africa Bottlenecked but Did Not Extirpate the Adaptive Radiation of Lake Victoria Haplochromine Cichlid Fishes
    Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes Kathryn R. Elmera,1, Chiara Reggioa,1, Thierry Wirtha,2, Erik Verheyenb, Walter Salzburgera,3, and Axel Meyera,4 aLehrstuhl fu¨r Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and bVertebrate Department, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium Edited by David B. Wake, University of California, Berkeley, CA, and approved June 17, 2009 (received for review March 3, 2009) The Great Lakes region of East Africa, including Lake Victoria, is the (6). Thus, Lake Victoria is renowned for housing the fastest center of diversity of the mega-diverse cichlid fishes (Perciformes: evolving large-scale adaptive radiation of vertebrates (12, 28, 29). Teleostei). Paleolimnological evidence indicates dramatic desicca- The mitochondrial DNA lineages of this superflock are derived tion of this lake ca. 18,000–15,000 years ago. Consequently, the from Lake Kivu, suggesting that this relatively small, but deep and hundreds of extant endemic haplochromine species in the lake old, Rift Valley lake is the source of the present diversity of must have either evolved since then or refugia must have existed, haplochromine cichlids in the Lake Victoria basin (6). within that lake basin or elsewhere, from which Lake Victoria was The morphological and genetic diversity of the LVRS is even recolonized. We studied the population history of the Lake Victoria more remarkable because paleolimnological data suggest a region superflock (LVRS) of haplochromine cichlids based on nu- complete, or near complete, desiccation of the Lake Victoria clear genetic analysis (12 microsatellite loci from 400 haplochomi- basin between 18,000 and 15,000 years ago (25, 30, 31).
    [Show full text]