Lakes Nyos and Monoun Gas Disasters (Cameroon)—Limnic Eruptions Caused By

Total Page:16

File Type:pdf, Size:1020Kb

Lakes Nyos and Monoun Gas Disasters (Cameroon)—Limnic Eruptions Caused By GEochemistry Monograph Series, Vol. 1, No. 1, pp. 1–50 (2017) www.terrapub.co.jp/onlinemonographs/gems/ Lakes Nyos and Monoun Gas Disasters (Cameroon)—Limnic Eruptions Caused by Excessive Accumulation of Magmatic CO2 in Crater Lakes Minoru Kusakabe Department of Environmental Biology and Chemistry University of Toyama 3190 Gofuku, Toyama 930-8555, Japan e-mail: [email protected] Citation: Kusakabe, M. (2017) Lakes Nyos and Monoun gas disasters (Cameroon)—Limnic erup- tions caused by excessive accumulation of magmatic CO2 in crater lakes. GEochem. Monogr. Ser. 1, 1–50, doi:10.5047/gems.2017.00101.0001. Abstract Received on December 5, 2015 This is a review paper on the Lakes Nyos and Monoun gas disasters that took place in the Accepted on May 11, 2016 mid-1980s in Cameroon, and on their related geochemistry. The paper describes: (i) the Online published on April 7, 2017 gas disasters (the event and testimonies); (ii) the unusual geochemical characters of the lakes, i.e., strong stratification with high concentrations of dissolved CO2; (iii) the evolu- Keywords tion of the CO2 content in the lakes during pre- and syn-degassing; (iv) the noble gas • Cameroon signatures and their implications; (v) a review of models of a limnic eruption; (vi) a • Lakes Nyos and Monoun revision of a spontaneous eruption hypothesis that explains the cyclic nature of a limnic • gas disaster eruption (Kusakabe 2015); (vii) a brief review of the origin of the Cameroon Volcanic • crater lakes Line (CVL) and the geochemistry of CVL magmas; (viii) a brief review of other CO - • magmatic CO2 2 • limnic eruption rich lakes in the world; and (ix) concluding remarks. • disaster mitigation Degassing of the two lakes has been successful. Most of the dissolved CO2 has been • degassing removed from Lake Monoun, resulting in the stoppage of the degassing system. How- • Cameroon Volcanic Line ever, the CO2 content in the lake started to increase in recent years due to the continuing •SATREPS supply of gas from the underlying magma, indicating the necessity of the continuous removal of gas from the lake. Lake Nyos will attain the same situation in several years when degassing will stop. Thus, a continuation of scientific monitoring of the lakes is essential. Since the transfer to Cameroonian scientists of monitoring techniques, includ- ing analytical equipment necessary for the monitoring, has been effected through the SATREPS project (Japan’s Official Development Aid), the responsibility is now theirs, and it is strongly hoped that the lake monitoring, the rehabilitation of displaced people, and the setting up of an infrastructure for them, etc., will be carried out by the Cameroonian Government and local scientists. 1. Introduction degassing of CO2 is the quiet discharge of gas often derived from a magmatic source, with varying degrees Volatiles in the deep interior of the Earth are brought of contamination by crustal or biological CO2. Crater to the surface mainly by volcanic activity. In terms of lakes usually sit on top of volcanic conduits and act as the present-day global carbon cycle, the CO2 discharge condensers or traps for magmatic volatiles. The Lake from subaerial volcanism including the passive dis- Nyos gas disaster in 1986, and a similar event in 1984 charge from the craters or flanks of volcanoes, is the at Lake Monoun, both in Cameroon, Central Africa, major non-anthropogenic contributor to atmospheric resulted from an excessive accumulation of magmatic CO2 (e.g., Kerrick, 2001; Gerlach, 2011). The passive CO2 in the bottom layers of the lakes. These volcanic © 2017 TERRAPUB, Tokyo. All rights reserved. doi:10.5047/gems.2017.00101.0001 ISSN: 2432-8804 2 M. Kusakabe / GEochem. Monogr. Ser. 1: 1–50, 2017 Fig. 1. Location of Lakes Nyos and Monoun (red circles) and volcanoes along the Cameroon Volcanic Line (solid black) in Cameroon, Central Africa. Modified from figure 1 of Environmental Monitoring and Assessment Journal, Hydrogeochemistry of surface- and groundwater in the vicinity of Lake Monoun, West Cameroon: Approach from multivariate statistical analysis and stable isotopic characterization, 2015, Kamtchueng, B. T., Fantong, W. Y., Takounjou, A. F., Tiodjio, E. R., Kusakabe, M., Mvondo, J. O., Zhang, J., Ohba, T., Tanyileke, G., Hell, J. V. and Ueda, A. „ Springer International Publishing Switzerland 2015 with permission of Springer. crater lakes are considered to be the sites of passive geochemical investigations revealed that the gas was degassing of CO2. On 26th August, 1986, a large CO2 that originated from magma and had accumulated amount of CO2 was suddenly released from Lake Nyos passively in the deep part of these lakes. The physico- that asphyxiated 1746 people, and an unaccountable chemical characteristics of the lakes are unique and number of cattle, living near the lake (Sigvaldason, have evolved with time, even after the gas release, due 1989). A very similar gas event took place in August to the continuing supply of magmatic CO2. 1984 at Lake Monoun, with 37 casualties (Sigurdsson In the present paper, issues related to these gas dis- et al., 1987). Lake Monoun is located only 100 km charges are reviewed in the following sections; (III) south-east of Lake Nyos (Fig. 1). A term “limnic erup- what happened at the time of the Lakes Nyos and tion” was coined by J.-C. Sabroux to describe a gas Monoun gas disasters?; (IV) pre- and syn-degassing outburst from a lake (Halbwachs et al., 2004), and will chemical evolution of the lakes; (V) possible causes be used in this review. Given that this type of gas dis- of the disasters, the models and the repetitive nature aster had not been previously recorded (Sigurdsson, of a limnic eruption. In relation to the recurrence pre- 1987a), the Lakes Monoun and Nyos events attracted vention of a limnic eruption, a bilateral scientific a great deal of attention, not only from the media but project between Japan and Cameroon called SATREPS- also from a disaster science perspective. At that time, NyMo was carried out during 2011 and 2016, and is nobody imagined that the lakes had accumulated so outlined in Section 5. much lethal gas and that the gas was released into the The upper 40 m of Lake Nyos is bounded on the north atmosphere without any precursor. Subsequent by a narrow dam of poorly consolidated pyroclastic doi:10.5047/gems.2017.00101.0001 © 2017 TERRAPUB, Tokyo. All rights reserved. M. Kusakabe / GEochem. Monogr. Ser. 1: 1–50, 2017 3 Fig. 2. (a) Victims near Lake (Stager and Suau, 1987). Reproduced with permission of Helimission (www.helimission.org). (b) Dead cow by the lake (photo taken by the author). rocks. This dam is being affected by back erosion. A gional units which are differentiated by their geogra- warning was given that the collapse of the dam could phy, climate and vegetation characteristics as follows: cause a flood that would affect inhabited areas over a (1) The Sudano-Sahelian zone in the North is composed 220 km distance (Lockwood et al., 1988). An accurate of the Mandara mountains, Diamaré plains and the estimation of the rate of back erosion of the dam is Benue Valley. (2) The savanna zone is composed of critical for the safety of people living downstream. the Adamawa highlands, the Tikar plain, the low land Thus, the age of the dam formation (or Nyos maar for- savanna of the Center and East regions, and the high- mation) has been hotly debated using different age land of the West and Northwest regions. (3) The tropi- determination techniques. Recent progress on the age cal forest zone is composed of the degraded forests of of the dam is briefly reviewed in Section 6. the Central and Littoral regions, and the tropical rain- Thirty nine crater lakes including Lakes Nyos and forests of the Southwest and East regions. (4) The Monoun and numerous soda springs are located along coastal and marine zone spreads along the Gulf of the Cameroon Volcanic Line (CVL). An understand- Guinea. The country’s economy is driven by agro-in- ing of the origin and the geochemistry of CVL mag- dustry in the coastal, central and southern zones (Molua mas is essential. These subjects are reviewed in Sec- and Lambi, 2006). Because of the above geographic tion 6, which constitutes the basis on which CO2 accu- characteristics, its wide range of climatic types, and mulation in these lakes is scientifically interpreted. We its cultural diversity, Cameroon is often nicknamed also need to understand why CO2 becomes enriched in “Africa in miniature”. The population of Cameroon is magmatic volatiles as they leave the magma. The Lakes estimated to be ~23 million as of January 2015 (http:/ Nyos and Monoun events have stimulated geochemical /countrymeters.info/en/Cameroon). According to the interest in other CO2-rich volcanic lakes in the world Demographics of Cameroon (http://en.wikipedia.org/ for their gas hazard potential. This is reviewed in Sec- wiki/Demographics_of_Cameroon), the country com- tion 7. prises an estimated 250 distinct ethnic groups, which may be classified into five large regional-cultural di- 2. Gas disasters at lakes Nyos and Monoun, visions: (1) the western highlanders (Semi-Bantu or Cameroon grassfielders), including the Bamileke, Bamoun, and many smaller Tikar groups in the Northwest (~38% of 2-1. Cameroon: Location and physiography the total population); (2) the coastal tropical forest peoples, including the Bassa, Duala (or Douala), and Cameroon is a country in Central Africa located be- many smaller groups in the Southwest (12%); (3) the tween 2–13∞N latitude, and 8–16∞E longitude (Fig. 1). southern tropical forest peoples, including the Beti- It is bounded by 6 countries: Chad to the northeast, Pahuin with subgroups called Bulu, Fang, Maka, Njem, Nigeria to the west, Central African Republic to the and Bakapygmies (18%); (4) the predominantly Islamic east, Equatorial Guinea, Gabon and Congo to the south.
Recommended publications
  • Human Health and Vulnerability in the Nyiragongo Volcano Crisis Democratic Republic of Congo 2002
    Human Health and Vulnerability in the Nyiragongo Volcano Crisis Democratic Republic of Congo 2002 Final Report to the World Health Organisation Dr Peter J Baxter University of Cambridge Addenbrooke’s Hospital Cambridge, UK Dr Anne Ancia Emergency Co-ordinator World Health Organisation Goma Nyiragongo Volcano with Goma on the shore of Lake Kivu Cover : The main lava flow which shattered Goma and flowed into Lake Kivu Lava flows from the two active volcanoes CONGO RWANDA Sake Munigi Goma Lake Kivu Gisenyi Fig.1. Goma setting and map of area and lava flows HUMAN HEALTH AND VULNERABILITY IN THE NYIRAGONGO VOLCANO CRISIS DEMOCRATIC REPUBLIC OF CONGO, 2002 FINAL REPORT TO THE WORLD HEALTH ORGANISATION Dr Peter J Baxter University of Cambridge Addenbrooke’s Hospital Cambridge, UK Dr Anne Ancia Emergency Co-ordinator World Health Organisation Goma June 2002 1 EXECUTIVE SUMMARY We have undertaken a vulnerability assessment of the Nyiragongo volcano crisis at Goma for the World Health Organisation (WHO), based on an analysis of the impact of the eruption on January 17/18, 2002. According to volcanologists, this eruption was triggered by tectonic spreading of the Kivu rift causing the ground to fracture and allow lava to flow from ground fissures out of the crater lava lake and possibly from a deeper conduit nearer Goma. At the time of writing, scientists are concerned that the continuing high level of seismic activity indi- cates that the tectonic rifting may be gradually continuing. Scientists agree that volcano monitoring and contingency planning are essential for forecasting and responding to fu- ture trends. The relatively small loss of life in the January 2002 eruption (less than 100 deaths in a population of 500,000) was remarkable, and psychological stress was reportedly the main health consequence in the aftermath of the eruption.
    [Show full text]
  • An Analysis of Primary and Secondary Production in Lake Kariba in a Changing Climate
    AN ANALYSIS OF PRIMARY AND SECONDARY PRODUCTION IN LAKE KARIBA IN A CHANGING CLIMATE MZIME R. NDEBELE-MURISA A thesis submitted in partial fulfillment of the requirements for the degree of Doctor Philosophiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape Supervisor: Prof. Charles Musil Co-Supervisor: Prof. Lincoln Raitt May 2011 An analysis of primary and secondary production in Lake Kariba in a changing climate Mzime Regina Ndebele-Murisa KEYWORDS Climate warming Limnology Primary production Phytoplankton Zooplankton Kapenta production Lake Kariba i Abstract Title: An analysis of primary and secondary production in Lake Kariba in a changing climate M.R. Ndebele-Murisa PhD, Biodiversity and Conservation Biology Department, University of the Western Cape Analysis of temperature, rainfall and evaporation records over a 44-year period spanning the years 1964 to 2008 indicates changes in the climate around Lake Kariba. Mean annual temperatures have increased by approximately 1.5oC, and pan evaporation rates by about 25%, with rainfall having declined by an average of 27.1 mm since 1964 at an average rate of 6.3 mm per decade. At the same time, lake water temperatures, evaporation rates, and water loss from the lake have increased, which have adversely affected lake water levels, nutrient and thermal dynamics. The most prominent influence of the changing climate on Lake Kariba has been a reduction in the lake water levels, averaging 9.5 m over the past two decades. These are associated with increased warming, reduced rainfall and diminished water and therefore nutrient inflow into the lake. The warmer climate has increased temperatures in the upper layers of lake water, the epilimnion, by an overall average of 1.9°C between 1965 and 2009.
    [Show full text]
  • Volcanic Gases and Aerosols Guidelines Introduction
    IVHHN Gas Guidelines www.ivhhn.org/gas/guidelines.html Volcanic Gases and Aerosols Guidelines The following pages contain information relating to the health hazards of gases and aerosols typically emitted during volcanic activity. Each section outlines the properties of the emission; its impacts on health; international guidelines for concentrations; and examples of concentrations and effects in volcanic contexts, including casualties. Before looking at the emissions data, we recommend that you read the general introduction to volcanic gases and aerosols first. A glossary to some of the terms used in the explanations and guidelines is also provided at the end of this document. Introduction An introduction to the aims and purpose of the Gas and Aerosol Guidelines is given here, as well as further information on international guideline levels and the units used in the website. A brief review of safety procedures currently implemented by volcanologists and volcano observatories is also provided. General Introduction Gas and aerosol hazards are associated with all volcanic activity, from diffuse soil gas emissions to 2- plinian eruptions. The volcanic emissions of most concern are SO2, HF, sulphate (SO4 ), CO2, HCl and H2S, although, there are other volcanic volatile species that may have human health implications, including mercury and other metals. Since 1900, there have been at least 62 serious volcanic-gas related incidents. Of these, the gas-outburst at Lake Nyos in 1986 was the most disastrous, causing 1746 deaths, >845 injuries and the evacuation of 4430 people. Other volcanic-gas related incidents have been responsible for more than 280 deaths and 1120 injuries, and contributed to the evacuation or ill health of >53,700 people (Witham, in review).
    [Show full text]
  • Information on Natural Disasters Part- I Introduction
    Information on Natural Disasters Part- I Introduction Astrology is the one that gave us the word ‘disaster’. Many believe that when the stars and planets are in malevolent position in our natal charts bad events or bad things would happen. Everyone one of us loves to avoid such bad things or disasters. The disaster is the impact of both natural and man-made events that influence our life and environment that surrounds us. Now as a general concept in academic circles, the disaster is a consequence of vulnerability and risk. The time often demands for appropriate reaction to face vulnerability and risk. The vulnerability is more in densely populated areas where if, a bad event strikes leads to greater damage, loss of life and is called as disaster. In other sparely populated area the bad event may only be a risk or hazard. Developing countries suffer the greatest costs when a disaster hits – more than 95 percent of all deaths caused by disasters occur in developing countries, and losses due to natural disasters are 20 times greater as a percentage of GDP in developing countries than in industrialized countries. A disaster can leads to financial, environmental, or human losses. The resulting loss depends on the capacity of the population to support or resist the disaster. The term natural has consequently been disputed because the events simply are not hazards or disasters without human involvement. Types of disasters Any disaster can be classified either as ‘Natural’ or ‘man-made’. The most common natural disasters that are known to the man kind are hailstorms, thunderstorm, very heavy snowfall, very heavy rainfalls, squalls, gale force winds, cyclones, heat and cold waves, earthquakes, volcanic eruptions, floods, and droughts which cause loss to property and life.
    [Show full text]
  • Volcanic Gases
    ManuscriptView metadata, citation and similar papers at core.ac.uk brought to you by CORE Click here to download Manuscript: Edmonds_Revised_final.docx provided by Apollo Click here to view linked References 1 Volcanic gases: silent killers 1 2 3 2 Marie Edmonds1, John Grattan2, Sabina Michnowicz3 4 5 6 3 1 University of Cambridge; 2 Aberystwyth University; 3 University College London 7 8 9 4 Abstract 10 11 5 Volcanic gases are insidious and often overlooked hazards. The effects of volcanic gases on life 12 13 6 may be direct, such as asphyxiation, respiratory diseases and skin burns; or indirect, e.g. regional 14 7 famine caused by the cooling that results from the presence of sulfate aerosols injected into the 15 16 8 stratosphere during explosive eruptions. Although accounting for fewer fatalities overall than some 17 18 9 other forms of volcanic hazards, history has shown that volcanic gases are implicated frequently in 1910 small-scale fatal events in diverse volcanic and geothermal regions. In order to mitigate risks due 20 2111 to volcanic gases, we must identify the challenges. The first relates to the difficulty of monitoring 22 2312 and hazard communication: gas concentrations may be elevated over large areas and may change 2413 rapidly with time. Developing alert and early warning systems that will be communicated in a timely 25 2614 fashion to the population is logistically difficult. The second challenge focuses on education and 27 2815 understanding risk. An effective response to warnings requires an educated population and a 2916 balanced weighing of conflicting cultural beliefs or economic interests with risk.
    [Show full text]
  • Bamenda Volcano, Cameroon Line)
    International Journal of Geosciences, 2014, 5, 1300-1314 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ijg http://dx.doi.org/10.4236/ijg.2014.511107 Study of Multi-Origin Hazards and Assessment of Associated Risks in the Lefo Caldera (Bamenda Volcano, Cameroon Line) Zangmo Tefogoum Ghislain1,2, Nkouathio David Guimolaire2, Kagou Dongmo Armand2, Gountie Dedzo Merlin3, Kamgang Pierre4 1Department of Earth Sciences, Faculty of Sciences, University of Maroua, Maroua, Cameroon 2Department of Earth Sciences, Faculty of Sciences, University of Dschang, Dschang, Cameroon 3Department of Life and Earth Science, High Teacher Training College, University of Maroua, Maroua, Cameroon 4Department of Earth Sciences, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon Email: [email protected] Received 18 August 2014; revised 15 September 2014; accepted 8 October 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The Bamenda Volcano (BV) (2621 m) is a stratovolcano situated in the Cameroon Line (CL). BV in- cludes Mount Lefo (2534 m) which is situated on its southern slopes and contains one elliptical caldera (3 × 4 km). This caldera is propitious to farming and breeding activity. Despite these prof- itable assets, Lefo caldera (LC) is an amphitheater of the occurrence of multi-origin hazards that have direct or indirect impacts on the biodiversity and human patrimony. The most present haz- ards are those of meteorological origin. Numerous combined factors (steepest slopes, heavy rain- falls, weathered state of volcanic products…) rule these hazards.
    [Show full text]
  • Establishing a Holocene Tephrochronology for Western Samoa and Its Implication for the Re-Evaluation of Volcanic Hazards
    ESTABLISHING A HOLOCENE TEPHROCHRONOLOGY FOR WESTERN SAMOA AND ITS IMPLICATION FOR THE RE-EVALUATION OF VOLCANIC HAZARDS by Aleni Fepuleai A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Copyright © 2016 by Aleni Fepuleai School of Geography, Earth Science and Environment Faculty of Science, Technology and Environment The University of the South Pacific August 2016 DECLARATION Statement by Author I, Aleni Fepuleai, declare that this thesis is my own work and that, to the best of my knowledge, it contains no material previously published, or substantially overlapping with material submitted for the award of any other degree at any institution, except where due acknowledge is made in the next. Signature: Date: 01/07/15 Name: Aleni Fepuleai Student ID: s11075361 Statement by Supervisor The research in this thesis was performed under my supervision and to my knowledge is the sole work of Mr Aleni Fepuleai. Signature Date: 01/07/15 Name: Dr Eleanor John Designation: Principal Supervisor ABSTRACT Samoan volcanism is tectonically controlled and is generated by tension-stress activities associated with the sharp bend in the Pacific Plate (Northern Terminus) at the Tonga Trench. The Samoan island chain dominated by a mixture of shield and post-erosional volcanism activities. The closed basin structures of volcanoes such as the Crater Lake Lanoto enable the entrapment and retention of a near-complete sedimentary record, itself recording its eruptive history. Crater Lanoto is characterised as a compound monogenetic and short-term volcano. A high proportion of primary tephra components were found in a core extracted from Crater Lake Lanoto show that Crater Lanoto erupted four times (tephra bed-1, 2, 3, and 4).
    [Show full text]
  • Water Resources Report
    MMINNEAPOLISINNEAPOLIS PPARKARK && RRECREATIONECREATION BBOARDOARD 20122012 WWATERATER RRESOURCESESOURCES RREPORTEPORT Environmental Stewardship Water Resources Management www.minneapolisparks.org January 2015 2012 WATER RESOURCES REPORT Prepared by: Minneapolis Park & Recreation Board Environmental Stewardship 3800 Bryant Avenue South Minneapolis, MN 55409-1029 612.230.6400 www.minneapolisparks.org January 2015 Funding provided by: Minneapolis Park & Recreation Board City of Minneapolis Public Works Copyright © 2015 by the Minneapolis Park & Recreation Board Material may be quoted with attribution. TABLE OF CONTENTS Page Abbreviations ............................................................................................................................. i Executive Summary ............................................................................................................... iv 1. Monitoring Program Overview .............................................................................................. 1-1 2. Birch Pond .............................................................................................................................. 2-1 3. Brownie Lake ......................................................................................................................... 3-1 4. Lake Calhoun ......................................................................................................................... 4-1 5. Cedar Lake ............................................................................................................................
    [Show full text]
  • Modeling a Release Scenario of Carbon Dioxide – Lake Nyos Disaster
    Journal of Space Technology, Vol 7, No 1, July 2017 Modeling a Release Scenario of Carbon Dioxide – Lake Nyos Disaster Shaikh Abdullah Abstract— On August 21, 1986, Lake Nyos in Cameroon To explain how the CO2 was given off two hypotheses have released a large cloud of Carbon dioxide and suffocated people been considered. The limnic hypothesis puts forward a and livestock up to 25 km from the lake. To model the scenario - spontaneous inversion of the lake triggered by a local variation Complex Hazardous Air Release Model (CHARM) - a in density, causing the movement of deep layers saturated in sophisticated tool has been used to simulate hazardous accidental release. This study covers process of data acquisition and its CO2 towards the upper most CO2 unsaturated layer. utilization in CHARM to see the impact in both 2-D and 3-D. Furthermore, the volcanic hypothesis puts forwards a sudden Simulation was performed to demonstrate an example of a emission of a large volume of CO2 of volcanic origin from far software tool that can be used to analyze a real-world scenario of underneath the lake [1]. chemical release. Real-world release modeling requires actual Reference [1] concluded that the event as a volcanic origin terrain data, meteorological information, and impact levels and based on sudden emission of CO from the lake bottom. the study describes bringing all that information together to 2 compare the simulation results with the real-world reported Contrary to the volcanic origin consideration; limnic impacts. Model was set to run to visualize impact and it was hypothesis is discussed in this paper to explain the release of found that upto 10 km area affected from released location in 3 CO2 due to inversion of the lake triggered by a local variation minutes duration contrary to 23 km as mentioned in research [1].
    [Show full text]
  • The Natural Choice for Wildlife Holidays Welcome
    HOLIDAYS WITH 100% FINANCIAL PROTECTION The natural choice for wildlife holidays Welcome After spending considerable time and effort reflecting, questioning what we do and how we do it, and scrutinising the processes within our office and the systems we use for support, I am delighted to say that we are imbued with a new vigour, undiminished enthusiasm, and greater optimism than ever. My own determination to continue building on the solid foundation of twenty years of experience in wildlife tourism, since we started from very humble beginnings – to offer what is simply the finest selection of high quality, good value, tailor-made wildlife holidays – remains undaunted, and is very much at the core of all we do. A physical move to high-tech office premises in the attractive city of Winchester leaves us much better connected to, and more closely integrated with, the outside world, and thus better able to receive visitors. Our team is leaner, tighter, more widely travelled and more knowledgeable than ever before, allowing us to focus on terrestrial, marine and – along with Dive Worldwide – submarine life without distraction. In planning this brochure we deliberately set out to whet the appetite, and make no mention of either dates or prices. As the vast majority of trips are tailored to our clients’ exact requirements – whether in terms of itinerary, duration, standard of accommodation or price – the itineraries herein serve merely as indications of what is possible. Thereafter, you can refine these suggestions in discussion with one of our experienced consultants to pin down your precise needs and wants, so we can together create the wildlife holiday of your dreams.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Management Working Paper Conservation and sustainable management of tropical moist forest ecosystems in Central Africa Case study of exemplary forest management in Central Africa: Community forest management at the Kilum-Ijim mountain forest region Cameroon By Christian Asanga October 2002 Forest Resources Development Service Working Paper FM/11 Forest Resources Division FAO, Rome (Italy) Forestry Department DISCLAIMER The Forest Management Working Papers report on issues addressed in the work programme of FAO. These working papers do not reflect any official position of FAO. Please refer to the FAO website (www.fao.org/fo) for official information. The purpose of these papers is to provide early information on on-going activities and programmes, to facilitate dialogue, and to stimulate discussion. Comments and feedback are welcome. For further information please contact: Ms. Mette Løyche Wilkie, Forestry Officer (Forest Management) Forest Resources Development Service Forest Resources Division Forestry Department FAO Viale delle Terme di Caracalla I-00100 Rome (Italy) e-mail: [email protected] Or FAO Publications and Information Coordinator: [email protected] For quotation: FAO (2002). Case study of exemplary forest management in Central Africa: community forest management at the kilum-Ijim mountain forest region, Cameroon. By Christian Asanga, October 2002. Forest Management Working Papers, Working Paper FM/11. Forest Resources Development
    [Show full text]
  • Lake Nyos Dam Assessment
    Lake Nyos Dam Assessment Cameroon, September 2005 Joint UNEP/OCHA Environment Unit United Nations Office for the United Nations Coordination of Humanitarian Affairs Environment Programme (OCHA) (UNEP) Published in Switzerland, October 2005 by the Joint UNEP/OCHA Environment Unit Copyright © 2005 Joint UNEP/OCHA Environment Unit This publication may be reproduced in whole or in part and in any form for educational or not-for-profit purposes without special permission from the copyright holder, provided acknowledgement is made of the source. Joint UNEP/OCHA Environment Unit Palais des Nations CH-1211 Geneva 10 Switzerland Tel. +41 (0) 22 917 3484 - Fax +41 (0) 22 917 0257 http://ochaonline.un.org/ochaunep The assessment was made possible through the kind assistance of the Ministry of Foreign Affairs and the Ministry of Transport, Public Works and Water Management of The Netherlands. Mission team: Ms. Nisa Nurmohamed Mr. Olaf van Duin Road and Hydraulic Engineering Institute Ministry of Transport, Public Works and Water Management The Netherlands Report Coordinator: René Nijenhuis, Joint UNEP/OCHA Environment Unit Photos: Nisa Nurmohamed, Olaf van Duin. Cover: Overview of Lake Nyos, Cameroon 2 Table of Contents 1. Executive summary 4 2. Introduction 5 3. Current situation of the dam 6 4. Carbon dioxide in Lake Nyos 7 5. Displacement of affected people 8 6. Suggested approaches 8 7. Lake Nyos Mitigation Project 9 8. Timeframe and costs 11 References and acknowledgements 13 Annex 1: Mission logbook 14 Annex 2: Carbon dioxide in Lake Nyos 16 3 Executive summary Upon request from the Ministry of Territorial Administration and Decentralization of Cameroon, the Joint UNEP/OCHA Environment Unit deployed of an assessment mission to assess the stability of he natural dam in Lake Nyos, Cameroon.
    [Show full text]