Cellular Respiration: the Breakdown of Glucose to Release Energy to Make ATP's

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Respiration: the Breakdown of Glucose to Release Energy to Make ATP's Cellular Respiration: The breakdown of glucose to release energy to make ATP's. Cellular Respiration C6H12O6 + O2 --------------> ATP + CO2 + H2O (energy) (energy) Photosynthesis Sunlight + CO2 + H2O --------------> C6H12O6 + O2 (energy) (energy) A = Oxygen B = Glucose C = CO2 D = H2O Cellular Respiration Overview Aerobic Respiration: The complete breakdown of glucose with oxygen resulting in lots of ATP's, CO2, H20. Phase 1: Glycolysis Reactions Reactions take place in the cytoplasm of cells. Reactants Products Glucose 4 ATP's 2 ATP's 2 NADH's 2 Pyruvic Acid molecules Phase 2: The Kreb's Cycle Reactions. Gets rid of Pyruvic Acid. Reactions take place in the fluid filled Matrix in a mitochondria. Reactant Products Total for 2 Pyruvic Acid Molecules Pyruvic Acid 4 NADH's 8 NADH's 1 FADH 2 FADH's 1 ATP 2 ATP'S CO2 Phase 3: The Electron Transport System (ETS) Reactions. Gets rid of NADH & FADH Reactions take place in the inner membrane Cristae of a mitochondria. Reactants Products NADH H2O FADH ATP's **** 2 ATP/FADH and 3 ATP/NADH O2 Aerobic Respiration totals for 1 Glucose molecule: From Glycolysis and Krebs 10 NADH's ----ETS------> 30 ATP's 2 FADH's ----ETS------> 4 ATP's ATP's from Glycolysis and Kreb's ---------> 6 ATP's Total ATP production for one molecule of glucose: 40 ATP (gross) Activiation energy needed for Glycolysis: -2 ATP Grand Total/Glucose: 38 ATP *Overall yield is probably around 36 ATP due to the active transport of Glycolysis' NADH into the mitochondria. Anaerobic Respiration: The incomplete breakdown of glucose WITHOUT OXYGEN resulting in a few ATP's and other high energy molecules. Two types of anaerobic respiration; Alcoholic Fermentation (yeast cells) and Lactic Acid Fermentation (higher animal muscle tissue during heavy activity). Alcoholic Fermentation: yeast cells Glycolysis Reactions + an additional step (in cytoplasm). Reactants Products Glucose 4 ATP's (gross) 2 ATP's 2 NADH's 2 Pyruvic Acid molecules additional step Reactants Products 2 Pyruvic Acid molecule Ethyl Alcohol 2 NADH's CO2 Lactic Acid Fermentation: your muscles cells can do this during heavy exertion. Glycolysis Reactions + an additional step (in cytoplasm). Reactants Products Glucose 4 ATP's (gross) 2 ATP's 2 NADH's 2 Pyruvic Acid molecules additional step Reactants Products 2 Pyruvic Acid molecule Lactic Acid (produces muscle fatigue and burn) 2 NADH's In both types of anaerobic respiration, the net yield per glucose molecule is 2 ATP. This is considerable less than aerobic respiration's yield (~ 38 ATP). .
Recommended publications
  • The Switch from Fermentation to Respiration in Saccharomyces Cerevisiae Is Regulated by the Ert1 Transcriptional Activator/Repressor
    INVESTIGATION The Switch from Fermentation to Respiration in Saccharomyces cerevisiae Is Regulated by the Ert1 Transcriptional Activator/Repressor Najla Gasmi,* Pierre-Etienne Jacques,† Natalia Klimova,† Xiao Guo,§ Alessandra Ricciardi,§ François Robert,†,** and Bernard Turcotte*,‡,§,1 ‡Department of Medicine, *Department of Biochemistry, and §Department of Microbiology and Immunology, McGill University Health Centre, McGill University, Montreal, QC, Canada H3A 1A1, †Institut de recherches cliniques de Montréal, Montréal, QC, Canada H2W 1R7, and **Département de Médecine, Faculté de Médecine, Université de Montréal, QC, Canada H3C 3J7 ABSTRACT In the yeast Saccharomyces cerevisiae, fermentation is the major pathway for energy production, even under aerobic conditions. However, when glucose becomes scarce, ethanol produced during fermentation is used as a carbon source, requiring a shift to respiration. This adaptation results in massive reprogramming of gene expression. Increased expression of genes for gluconeogenesis and the glyoxylate cycle is observed upon a shift to ethanol and, conversely, expression of some fermentation genes is reduced. The zinc cluster proteins Cat8, Sip4, and Rds2, as well as Adr1, have been shown to mediate this reprogramming of gene expression. In this study, we have characterized the gene YBR239C encoding a putative zinc cluster protein and it was named ERT1 (ethanol regulated transcription factor 1). ChIP-chip analysis showed that Ert1 binds to a limited number of targets in the presence of glucose. The strongest enrichment was observed at the promoter of PCK1 encoding an important gluconeogenic enzyme. With ethanol as the carbon source, enrichment was observed with many additional genes involved in gluconeogenesis and mitochondrial function. Use of lacZ reporters and quantitative RT-PCR analyses demonstrated that Ert1 regulates expression of its target genes in a manner that is highly redundant with other regulators of gluconeogenesis.
    [Show full text]
  • Comparing Aerobic Vs. Anaerobic Respiration
    Comparing Aerobic vs. Anaerobic Respiration Objective: Students will compare the two types of cellular respiration: aerobic respiration and anaerobic respiration (fermentation). Students will note similarities and differences between the two processes including when, where, and how each process occurs. Students will develop a concept map using Inspiration indicating the criteria for aerobic and anaerobic respiration. This concept map will indicate: Three similarities between the two processes. Two types of cells that perform each process. Location in the cell where each process occurs. Oxygen requirements for each process. Reactants and products for each process. Energy output for each process. Two different types of anaerobic respiration. Reactants and products for each. Types of cells that perform each process. Introduction: This activity will follow a fermentation (anaerobic respiration) lab using yeast. This lab will address the process of alcoholic fermentation. Students will perform push-ups to experience lactic acid build-up in muscle cells. These activities will gain interest in the process of anaerobic respiration. Students will have already studied the detailed process of aerobic cellular respiration. Procedure: Students will work in pairs or trios to answer questions (as seen in benchmarks) on aerobic and anaerobic respiration. Students will use previous notes and lab activities to summarize main ideas for aerobic and anaerobic respiration. Individually, students will create a concept map using Inspiration to further integrate and separate the two processes. Accommodations: Instructions will be provided in written format as well as read orally. Instructions will also be on an overhead. One example will be provided for students on how to summarize data.
    [Show full text]
  • Glycolysis/Embden-Meyerhof-Parnas Pathway (EMP Pathway)
    Reaspiration iving cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates, proteins, and lipids) Lin the cells. This process of harvesting chemical energy for metabolic activities in the form of ATP by oxidising the food molecules is called ‘respiration’. The most common substrate used in respiration for oxidation is glucose. Factor affecting the respiration (1) Oxygen Content of the Atmosphere: The percentage of oxygen in the surrounding atmosphere greatly influence the rate of respiration. But reduction of the oxygen content of the air, however, causes no significant lowering in the respiratory rate until the percentage drops to about 10%. With the increase of oxygen concentration in the atmosphere, the rate of respiration also increases, but this effect is not as accelerating as might be expected. In certain plants, like rice, on removal of oxygen the rate of respiration in terms of total carbon dioxide produced actually increases. This indicates that anaerobic respiration comes into action when oxygen is no longer available and that the plant, if it has to make up for the relative inefficiency of this system, has to respire faster. (2) Effect of Temperature: Like most chemical reactions, the rate of respiration is greatly influenced by temperature. If the rise is at a much higher starting temperature, say between 20° and 30°C, then the Q 10 may fall below 2. In certain cases the rate of respiration increases at lower temperature. increase in the rate of respiration is primarily due to increase in the quantity of respirable materials (such as soluble carbohydrates) which tend to accumulate in Irish potato at temperature slightly above 0°C.
    [Show full text]
  • • Glycolysis • Gluconeogenesis • Glycogen Synthesis
    Carbohydrate Metabolism! Wichit Suthammarak – Department of Biochemistry, Faculty of Medicine Siriraj Hospital – Aug 1st and 4th, 2014! • Glycolysis • Gluconeogenesis • Glycogen synthesis • Glycogenolysis • Pentose phosphate pathway • Metabolism of other hexoses Carbohydrate Digestion! Digestive enzymes! Polysaccharides/complex carbohydrates Salivary glands Amylase Pancreas Oligosaccharides/dextrins Dextrinase Membrane-bound Microvilli Brush border Maltose Sucrose Lactose Maltase Sucrase Lactase ‘Disaccharidase’ 2 glucose 1 glucose 1 glucose 1 fructose 1 galactose Lactose Intolerance! Cause & Pathophysiology! Normal lactose digestion Lactose intolerance Lactose Lactose Lactose Glucose Small Intestine Lactase lactase X Galactose Bacteria 1 glucose Large Fermentation 1 galactose Intestine gases, organic acid, Normal stools osmotically Lactase deficiency! active molecules • Primary lactase deficiency: อาการ! genetic defect, การสราง lactase ลด ลงเมออายมากขน, พบมากทสด! ปวดทอง, ถายเหลว, คลนไสอาเจยนภาย • Secondary lactase deficiency: หลงจากรบประทานอาหารทม lactose acquired/transient เชน small bowel เปนปรมาณมาก เชนนม! injury, gastroenteritis, inflammatory bowel disease! Absorption of Hexoses! Site: duodenum! Intestinal lumen Enterocytes Membrane Transporter! Blood SGLT1: sodium-glucose transporter Na+" Na+" •! Presents at the apical membrane ! of enterocytes! SGLT1 Glucose" Glucose" •! Co-transports Na+ and glucose/! Galactose" Galactose" galactose! GLUT2 Fructose" Fructose" GLUT5 GLUT5 •! Transports fructose from the ! intestinal lumen into enterocytes!
    [Show full text]
  • THE AEROBIC (Air-Robic!) PATHWAYS
    THE AEROBIC (air-robic!) PATHWAYS Watch this video on aerobic glycolysis: http://ow.ly/G5djv Watch this video on oxygen use: http://ow.ly/G5dmh Energy System 1 – The Aerobic Use of Glucose (Glycolysis) This energy system involves the breakdown of glucose (carbohydrate) to release energy in the presence of oxygen. The key to this energy system is that it uses OXYGEN to supply energy. Just like the anaerobic systems, there are many negatives and positives from using this pathway. Diagram 33 below summarises the key features of this energy system. When reading the details on the table keep in mind the differences between this and the previous systems that were looked at. In this way a perspective of their features can be appreciated and applied. Diagram 33: The Key Features of the Aerobic Glycolytic System Highlight 3 key features in the diagram that are important to the functioning of this system. 1: ------------------------------------------------------------------------------------------------------------------------------------------------------- 2: ------------------------------------------------------------------------------------------------------------------------------------------------------- 3: ------------------------------------------------------------------------------------------------------------------------------------------------------- Notes ---------------------------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • Cellular Respiration +
    Reference 3 Cellular Respiration Cellular respiration is a critical biochemical process for life on Earth. All cells require a continuous supply of energy to maintain order, build organic molecules, grow, and carry on all their other activities. Plants and other organisms can recover the solar energy stored in the molecular bonds of glucose by breaking down the sugar. Energy can then be stored in the bonds of ATP, which is used for a variety of processes that a cell must carry out to live. Cellular respiration is the most efficient way that glucose can be broken down to generate energy for other cellular reactions. In a sense, cellular respiration can be thought of as a type of controlled burning. When something is burned, a great deal of energy is released. The process requires oxygen and releases carbon dioxide and water and produces ATP. Cellular respiration can be summarized as: C6H12O6 + 6 O2 6 CO2 + 6 H2O + 32 ATP & heat carbohydrate oxygen carbon dioxide water energy During cellular respiration, the energy stored in a glucose molecule is released slowly as the molecule is broken down (figure R3.1). Cellular respiration occurs in three phases. In the first steps, known as glycolysis, glucose is split into two 3- carbon molecules. This releases energy, some of which is transferred to ATP. Glycolysis takes place in the cell cytoplasm. The second stage is called the Krebs cycle. During the Krebs cycle, each of the 3-carbon molecules is disassembled in a series of reactions to form six carbon dioxide molecules. Hydrogen atoms are also released.
    [Show full text]
  • Steady State and Transient Behavior of a Continuous Fermentor Thor Almep R Hanson Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Steady state and transient behavior of a continuous fermentor Thor almeP r Hanson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Hanson, Thor almeP r, "Steady state and transient behavior of a continuous fermentor " (1969). Retrospective Theses and Dissertations. 4109. https://lib.dr.iastate.edu/rtd/4109 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 70-13,589 HANSONJ Thor Palmer, 1942- STEADY STATE AND TRANSIENT BEHAVIOR OF A CONTINUOUS FERMENTOR. Iowa State University, Ph.D., 1969 Engineering, chemical University Microfilms, Inc., Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED STEADY STATE AND TRANSIENT BEHAVIOR OF A CONTINUOUS FERMENTOR Thor Palmer Hanson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OP PHILOSOPHY Major Subject: Chemical Engineering Approved : Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. D( 'ége Iowa State University Ames, lowa 1969 11 TABLE OP CONTENTS Page ABSTRACT v I. INTRODUCTION 1 II. BACKGROUND INFORMATION 5 A. Bacterial Growth 5 B. Mathematical Models for Bacterial Growth l4 1.
    [Show full text]
  • Energy Metabolism: Gluconeogenesis and Oxidative Phosphorylation
    International Journal for Innovation Education and Research www.ijier.net Vol:-8 No-09, 2020 Energy metabolism: gluconeogenesis and oxidative phosphorylation Luis Henrique Almeida Castro ([email protected]) PhD in the Health Sciences Graduate Program, Federal University of Grande Dourados Dourados, Mato Grosso do Sul – Brazil. Leandro Rachel Arguello Dom Bosco Catholic University Campo Grande, Mato Grosso do Sul – Brazil. Nelson Thiago Andrade Ferreira Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Geanlucas Mendes Monteiro Heath and Development in West Central Region Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Jessica Alves Ribeiro Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Juliana Vicente de Souza Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Sarita Baltuilhe dos Santos Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Fernanda Viana de Carvalho Moreto MSc., Nutrition, Food and Health Graduate Program, Federal University of Grande Dourados Dourados, Mato Grosso do Sul – Brazil. Ygor Thiago Cerqueira de Paula Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. International Educative Research Foundation and Publisher © 2020 pg. 359 International Journal for Innovation Education and Research ISSN 2411-2933 September 2020 Vanessa de Souza Ferraz Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil. Tayla Borges Lino Motion Science Graduate Program, Federal University of Mato Grosso do Sul Campo Grande, Mato Grosso do Sul – Brazil.
    [Show full text]
  • Novel Industrial Bioprocesses for Production of Key Valuable Steroid Precursors from Phytosterol
    Novel industrial bioprocesses for production of key valuable steroid precursors from phytosterol Project acronym: MySterI (Mycobacterial Steroids for Industry) Project no: EIB.12.010 Name: Carlos Barreiro ERA‐IB‐2 final conference, Berlin, 16./17.02.2016 Project partners 2 Research Centres 2 Universities 1 SME 1 Large Enterprise Project acronym: MySterI ERA‐IB‐2 Final conference, Berlin, 16./17.02.2016 www.era‐ib.net P1: INBIOTEC Project partners • P1: COORDINATOR: Asociación de investigación‐ INBIOTEC‐Instituto de Biotecnología de León (Research Centre). León (Spain). • Dr. Carlos Barreiro, Dr. Antonio Rodríguez‐García, Dr. Alberto Sola‐Landa MySterI tasks of INBOTEC: ‐Genome sequencing Mycobacterium sp NRRL B‐3805 ‐Genome mining and annotation ‐Transcriptomics (microarrays, RNAseq) ‐Proteomics (secretome analysis) • Total project budget: 93 000 € Project acronym: MySterI ERA‐IB‐2 Final conference, Berlin, 16./17.02.2016 www.era‐ib.net P2: Pharmins ltd. Project partners • P2: Pharmins Ltd. (SME) Pushchino (Russian Federation) • Dr. Marina Donova MySterI tasks of Pharmins: ‐Genome sequencing Mycobacterium sp NRRL B‐3805 ‐Biochemical characterization of proteins ‐Sterol conversion by modified mycobacterial strains ‐Two‐steps fermentation to obtain 11‐α‐OH‐AD ‐Modification of 11α‐hydroxylase enzymes • Total project budget: 123 743 € Project acronym: MySterI ERA‐IB‐2 Final conference, Berlin, 16./17.02.2016 www.era‐ib.net P3: University of York Project partners • P3: University of York (University) York (UK) • Professor Maggie Smith, Dr Jessica Loraine MySterI tasks of U. of York: ‐Genome sequencing Mycobacterium sp NRRL B‐3805 ‐Genetic tools and strain development ‐Development of DNA transformation procedures ‐Development of gene knock‐out techniques ‐Development of promoters to control gene expression • Total project budget: 312 246€ Project acronym: MySterI ERA‐IB‐2 Final conference, Berlin, 16./17.02.2016 www.era‐ib.net P4: Stiftelsen SINTEF Project partners • P4: Stiftelsen SINTEF (Research centre).
    [Show full text]
  • Fermentation Microorganisms and Flavor Changes in Fermented Foods R.F
    Fermentation Technology—12th World Congress of Food Science and Technology Fermentation Microorganisms and Flavor Changes in Fermented Foods R.F. MCFEETERS ABSTRACT: Food fermentation processes often result in profound changes in flavor relative to the starting ingredients. However, fermenting foods are typically very complex ecosystems with active enzyme systems from the ingredient materials interacting with the metabolic activities of the fermentation organisms. Factors such as added salt, particle sizes, temperature, and oxygen levels will also have important effects on the chemistry that occurs during fermentation. This is a brief review of recent research on flavor changes in food fermentations. The emphasis will be on the role of lactic acid bacteria in changing the compounds that help determine the character of fermented foods from plant-based substrates. Introduction GC-olfactometry led to recognition of a compound with an odor actic acid bacteria influence the flavor of fermented foods in a close to that of the fermentation brine. The compound with a fer- Lvariety of ways. In many cases, the most obvious change in a lac- mentation brine odor was identified as trans-4-hexenoic acid. They tic acid fermentation is the production of acid and lowering pH that also tentatively identified the presence of cis-4-hexenoic acid. In a results in an increase in sourness. Since most of the acid produced reconstitution experiment, a solution that contained 25 ppm trans- in fermentations will be produced by the metabolism of sugars, 4-hexenoic acid, 10 ppm phenyl ethyl alcohol, 0.65% lactic acid, sweetness will likely decrease as sourness increases. The produc- 0.05% acetic acid, and 8% NaCl had an odor very similar to that of tion of volatile flavor components tends to be the first mechanism brine from fermented cucumbers.
    [Show full text]
  • Yeast Metabolism & Fermentation By-Products
    1 Yeast Metabolism & Fermentation By-Products Influence on fermentation and product quality VLB-Berlin; B.H.Meyer ■ ■ ■ Craft Brewers Conference 2015, Portland, OR ■ 2 VLB-Berlin; B.H.Meyer ■ ■ ■ Craft Brewers Conference 2015, Portland, OR ■ 3 VLB-Berlin; B.H.Meyer ■ ■ ■ Craft Brewers Conference 2015, Portland, OR ■ 4 “Brewer’s yeast dissolved in water disintegrates in countless, tiniest beads. Upon adding them to sugared water the magic begins and small animals begin to form. With their tiny suction spouts they eagerly suck up sugar from this solution whereupon immediate and unmistakable digestion sets in, characterised by spontaneous release of excrements from their bowels. They excrete ethyl alcohol from their intestines and carbonic acid from their urinary tract. Come, take a closer look at them. Do you see the incessant stream of a specifically lighter liquid rising from their anus and the gushes of carbonic acid being spurted out from their enormous genitals in short intervals?” Liebig, Justus v. (1803-1875) VLB-Berlin; B.H.Meyer ■ ■ ■ Craft Brewers Conference 2015, Portland, OR ■ Uni-düsseldorf.de 5 Biochemical Changes during Fermentation 1. Fermentation of carbohydrates 2. Nitrogen in wort Assimilation/ Dissimilation 3. Formation of metabolic compounds Acids • CO2 • Organic acids Alcohols • Ethanol • Secondary and tertiary alcohols • Higher aliphatic alcohols (HAA) • Aromatic alcohols Esters Aldehydes and Ketones Vicinal Diketones (VDK) Sulphur-containing compounds VLB-Berlin; B.H.Meyer ■ ■ ■ Craft Brewers Conference 2015, Portland,
    [Show full text]
  • Effect of Lactic Acid Fermentation on Color, Phenolic Compounds And
    microorganisms Article Effect of Lactic Acid Fermentation on Color, Phenolic Compounds and Antioxidant Activity in African Nightshade Alexandre Degrain 1,2, Vimbainashe Manhivi 1, Fabienne Remize 2,* , Cyrielle Garcia 2 and Dharini Sivakumar 1 1 Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; [email protected] (A.D.); [email protected] (V.M.); [email protected] (D.S.) 2 QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d’Avignon, 97490 Sainte Clotilde, France; [email protected] * Correspondence: [email protected]; Tel.: +27-012-382-5303 Received: 3 August 2020; Accepted: 23 August 2020; Published: 30 August 2020 Abstract: This study aimed to investigate the influences of fermentation at 37 ◦C for 3 days by different lactic acid bacterium strains, Lactobacillus plantarum (17a), Weissella cibaria (21), Leuconostoc pseudomesenteroides (56), W. cibaria (64) or L. plantarum (75), on color, pH, total soluble solids (TSS), phenolic compounds and antioxidant activity of African nightshade (leaves). Results indicated fermentation with L. plantarum 75 strain significantly decreased the pH and total soluble solids, and increased the concentration of ascorbic acid after 3 days. L. plantarum 75 strain limited the color modification in fermented nightshade leaves and increased the total polyphenol content and the antioxidant activity compared to the raw nightshade leaves. Overall, L. plantarum 75 enhanced the functional potential of nightshade leaves and improved the bioavailability of gallic, vanillic acid, coumaric, ferulic ellagic acids, flavonoids (catechin, quercetin and luteolin) and ascorbic acid compared to the other lactic acid bacterium strains.
    [Show full text]