October 10, 2006
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electricity Consumption and Battery Lifespan Estimation for Transit Electric Buses: Drivetrain Simulations and Electrochemical Modelling
Electricity consumption and battery lifespan estimation for transit electric buses: drivetrain simulations and electrochemical modelling by Ana¨ıssiaFranca B.Eng, University of Victoria, 2015 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Mechanical Engineering c Anaissia Franca, 2018 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Electricity consumption and battery lifespan estimation for transit electric buses: drivetrain simulations and electrochemical modelling by Ana¨ıssiaFranca B.Eng, University of Victoria, 2015 Supervisory Committee Dr. Curran Crawford, Supervisor (Department of Mechanical Engineering) Dr. Ned Djilali, Supervisor (Department of Mechanical engineering) iii ABSTRACT This thesis presents a battery electric bus energy consumption model (ECONS-M) coupled with an electrochemical battery capacity fade model (CFM). The underlying goals of the project were to develop analytical tools to support the integration of battery electric buses. ECONS-M projects the operating costs of electric bus and the potential emission reductions compared to diesel vehicles for a chosen transit route. CFM aims to predict the battery pack lifetime expected under the specific driving conditions of the route. A case study was run for a transit route in Victoria, BC chosen as a candidate to deploy a 2013 BYD electric bus. The novelty of this work mainly lays in its application to battery electric buses, as well as in the coupling of the ECONS-M and the electrochemical model to predict how long the batteries can last if the electric bus is deployed on a specific transit route everyday. -
Agreements That Have Undermined Venezuelan Democracy Xxxxxxxxxxxxxxxxxxxxxxthe Chinaxxxxxxxxxxxxxxxxxxxxxx Deals Agreements That Have Undermined Venezuelan Democracy
THE CHINA DEALS Agreements that have undermined Venezuelan democracy xxxxxxxxxxxxxxxxxxxxxxThe Chinaxxxxxxxxxxxxxxxxxxxxxx Deals Agreements that have undermined Venezuelan democracy August 2020 1 I Transparencia Venezuela THE CHINA DEALS Agreements that have undermined Venezuelan democracy Credits Transparencia Venezuela Mercedes De Freitas Executive management Editorial management Christi Rangel Research Coordinator Drafting of the document María Fernanda Sojo Editorial Coordinator María Alejandra Domínguez Design and layout With the collaboration of: Antonella Del Vecchio Javier Molina Jarmi Indriago Sonielys Rojas 2 I Transparencia Venezuela Introduction 4 1 Political and institutional context 7 1.1 Rules of exchange in the bilateral relations between 12 Venezuela and China 2 Cash flows from China to Venezuela 16 2.1 Cash flows through loans 17 2.1.1 China-Venezuela Joint Fund and Large 17 Volume Long Term Fund 2.1.2 Miscellaneous loans from China 21 2.2 Foreign Direct Investment 23 3 Experience of joint ventures and failed projects 26 3.1 Sinovensa, S.A. 26 3.2 Yutong Venezuela bus assembly plant 30 3.3 Failed projects 32 4 Governance gaps 37 5 Lessons from experience 40 5.1 Assessment of results, profits and losses 43 of parties involved 6 Policy recommendations 47 Annex 1 52 List of Venezuelan institutions and officials in charge of negotiations with China Table of Contents Table Annex 2 60 List of unavailable public information Annex 3 61 List of companies and agencies from China in Venezuela linked to the agreements since 1999 THE CHINA DEALS Agreements that have undermined Venezuelan democracy The People’s Republic of China was regarded by the Chávez and Maduro administrations as Venezuela’s great partner with common interests, co-signatory of more than 500 agreements in the past 20 years, and provider of multimillion-dollar loans that have brought about huge debts to the South American country. -
2017 Passenger Vehicles Actual and Reported Fuel Consumption: a Gap Analysis
2017 Passenger Vehicles Actual and Reported Fuel Consumption: A Gap Analysis Innovation Center for Energy and Transportation December 2017 1 Acknowledgements We wish to thank the Energy Foundation for providing us with the financial support required for the execution of this report and subsequent research work. We would also like to express our sincere thanks for the valuable advice and recommendations provided by distinguished industry experts and colleagues—Jin Yuefu, Li Mengliang, Guo Qianli,. Meng Qingkuo, Ma Dong, Yang Zifei, Xin Yan and Gong Huiming. Authors Lanzhi Qin, Maya Ben Dror, Hongbo Sun, Liping Kang, Feng An Disclosure The report does not represent the views of its funders nor supporters. The Innovation Center for Energy and Transportation (iCET) Beijing Fortune Plaza Tower A Suite 27H No.7 DongSanHuan Middle Rd., Chaoyang District, Beijing 10020 Phone: 0086.10.6585.7324 Email: [email protected] Website: www.icet.org.cn 2 Glossary of Terms LDV Light Duty Vehicles; Vehicles of M1, M2 and N1 category not exceeding 3,500kg curb-weight. Category M1 Vehicles designed and constructed for the carriage of passengers comprising no more than eight seats in addition to the driver's seat. Category M2 Vehicles designed and constructed for the carriage of passengers, comprising more than eight seats in addition to the driver's seat, and having a maximum mass not exceeding 5 tons. Category N1 Vehicles designed and constructed for the carriage of goods and having a maximum mass not exceeding 3.5 tons. Real-world FC FC values calculated based on BearOil app user data input. -
D2.1 Mapping of the Current Status of Dynamics of Value Chain of European Transport Manufacturing Industry
Ref. Ares(2018)476363 - 26/01/2018 D2.1 Mapping of the current status of dynamics of value chain of European transport manufacturing industry Arrasate, 26/01/2016 Editor: Gerardo Pagalday [email protected] Authors: All parners Date: 26/01/2018 1 Document change record Version Date Status Author Description 0.1 24/03/2017 Draft Konstantin Konrad Draft document structure 0.2 18/12/2017 Draft Gerardo Pagalday Deliverable version 2 26/01/2018 Deliverable Gerardo Pagalday Deliverable final version Consortium No Participant organisation name Short Name Country 1 VDI/VDE Innovation + Technik GmbH VDI/VDE-IT DE 2 Railenium Railenium FR 3 Cranfield University CU UK 4 Maritime University of Szczecin MUS PL 5 Transportøkonomisk Institutt ( TOI) TOI NO 6 Institute of Shipping Economics and Logistics ISL DE 7 IK4 Research Alliance IK4 ES 8 Intl. Association of Public Transport Operators UITP BE 2 Table of contents 1 Introduction ......................................................................................................................... 23 1.1 Project background ..................................................................................................... 23 1.2 Objectives ................................................................................................................... 24 1.3 Focus Areas for D2.1 Mapping of the current status of dynamics of value chain of European transport manufacturing industry ............................................................... 24 2 Automotive ......................................................................................................................... -
The Dispatcher
ie 1 September 2015 Volume 2, Issue 5 The Dispatcher Telematics Industry Insights by Michael L. Sena Special interest features covered A Car Hacking in St. Louis in each issue: WHAT SHOULD NEVER HAVE HAPPENED DID HAPPEN. Two WHO ARE THE CAR HACKERS? • Autonomous and researchers (see sidebar) were able to successfully Charlie Miller and Chris Self- driving Cars • Big Data break through whatever security shields Fiat Chrysler Valasek are the dynamic due • DSRC versus Automobiles and Sprint set up around its UConnect on- responsible for performing the Wireless board systems and wireless network to take control over feat of hacking the Jeep Cherokee. According to the Communication the most mission critical functions of a Jeep Cherokee. Starting with the climate controls, the radio and the Wired article, Charlie Miller is a • Connected security researcher for Twitter Vehicles – V2V windshield wipers, the attackers moved to the and a former US National and V2I transmission and the brakes. Eventually, the car was Security Agency (NSA) hacker. • Third party brought to a standstill on a major artery in St. Louis, Chris Valasek is the director of services for eCall Missouri in the US. The driver of the vehicle, Andy vehicle security research at Greenberg, a journalist with Wired Magazine, was a IOActive, a consultancy. This is willing victim, but his description of his experience in not the first time they have Wired indicated that he was truly frightened while he sat teamed up to show that connected vehicles are helpless in the vehicle while it was being controlled Individual Highlights: vulnerable to cyber-attacks. -
Koenigsegg to Embark on Evolutionary Journey for Future Growth
Koenigsegg to embark on evolutionary journey for future growth Press release 29 January 2019, Ängelholm, Sweden Koenigsegg AB is forming a strategic partnership with NEVS AB, enabling the development of parallel vehicle models in slightly higher volumes with emphasis on electrification, as well as strengthening growth opportunities in the hyper car segment. NEVS is making a capital injection of EUR 150 million, thereby taking a 20 percent minority stake in Koenigsegg’s parent company. Additionally, the parties are forming a joint venture to expand into new market segments where NEVS AB is contributing USD 150 million in starting capital for a 65 percent stake and Koenigsegg obtains 35 percent by contributing primarily with intellectual property, technology licenses, and product design. The partnership will deepen an already existing collaboration between Koenigsegg and NEVS, creating synergies between their geographical footprints, experiences and competencies. Koenigsegg already has a distinguished unique market position for hyper cars, and through the additional joint venture NEVS and Koenigsegg are partnering up to develop a product for new and untapped segments, leveraging both of the companies’ strengths. Through NEVS production facilities in Trollhättan, Koenigsegg will access additional capabilities as well as benefiting from the extensive automotive knowledge in the region, whilst maintaining their centre of excellence in Ängelholm. Alongside NEVS capacity for production in Trollhättan and China, NEVS through its majority owner Evergrande, has a wide distribution platform and channels through ownership in one of China’s largest car retailers. “Koenigsegg is breaking new ground, capitalising on our unique technology, performance track record and market position to explore and develop new products. -
2017 Annual Report.Pdf
International Energy Agency Technology Collaboration Programme on Hybrid and Electric Vehicles (HEV TCP) Hybrid and Electric Vehicles The Electric Drive Chauffeurs September 2017 www.ieahev.org Technology Collaboration Programme on Hybrid and Electric Vehicles (HEV TCP) functions within a framework created by the International Energy Agency (IEA). Views, findings, and publications of HEV TCP do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries. HEV TCP was previously known as the Implementing Agreement for co-operation on Hybrid and Electric Vehicle Technologies and Programmes (IA-HEV). The labelling changed in 2016. Cover Photo: Electric taxi by Chinese automaker BAIC BJEV. Beijing’s fleet of 70,000 taxis will gradually be replaced by EVs. (Image Courtesy: private) The Electric Drive Chauffeurs Cover Designer: Anita Theel (Digital Media Designer) ii International Energy Agency Technology Collaboration Programme on Hybrid and Electric Vehicles (HEV TCP) Annual Report Prepared by the Executive Committee and Task 1 over the Year 2016 Hybrid and Electric Vehicles The Electric Drive Chauffeurs Editor: Gereon Meyer (Operating Agent Task 1, VDI/VDE Innovation + Technik GmbH) Co-editors: Jadranka Dokic, Heike Jürgens, Diana M. Tobias (VDI/VDE Innovation + Technik GmbH) Contributing Authors: René-Pierre Allard Natural Resources Canada Canada James Barnes Barnes Tech Advising United States Martin Beermann Joanneum Research Austria Graham Brennan SEAI Ireland Jens Brokate DLR Germany Carol Burelle Natural Resources Canada Canada Pierpaolo Cazzola IEA France Cristina Corchero IREC Spain Meally Declan SEAI Ireland Andreas Dorda BMVIT Austria Julie Francis Allegheny Science & Technology United States Halil S. Hamut TÜBITAK MRC Turkey David Howell U.S. -
Electric Vehicle (EV) Industry Overview
Electric Vehicle (EV) Industry Overview January 2019 Table of Contents I. Investment Thesis and Risks II. Industry Overview A. Introduction to Electric Vehicle (EV) B. Trends in EV Design III. Global EV Market A. EV Adoption B. EV vs. ICE C. Commercial and Heavy Duty EVs IV. Regional Overview A. US Market Overview B. Tesla: A Major Disruptor in the Market C. Europe Market Overview D. China – The Major Player in Asian Market V. Battery Technologies A. Battery Swapping B. Solid-state Battery C. Other Battery Technologies D. Battery Recycling E. Autonomous Vehicle (AV) F. Connected Vehicle G. Robo-taxi H. Funding Landscape I. Market Dynamics I. Investment Thesis and Risks Palette RGB EVs are Poised to Disrupt the Automotive Ecosystem values 0 72 122 These are going to create a significant impact on the automotive ecosystem 100 135 190 Impact of EVs on the automotive ecosystem 255 204 0 • Automobile manufacturers are making huge investments in electric car divisions as they realize that EVs are disrupting the industry 228 114 0 • Significant internal changes will take place as teams fight for their share of budgets in R&D activities and existing powertrain heavyweights will refuse to move to electric 1 107 33 70 1 divisions • Many new supply chain partnerships will have to be created • The focus will move to new technologies as the automobile becomes a true computer 204 215 234 Automakers on wheels 0 112 60 • Dealers will have to unlearn and learn to sell both EVs and conventional vehicles • Dealers should equip their personnel with a diversified -
The Electric Vehicle and Charging Infrastructure Development in China
___________________________________________________________________________ 2018/EWG/WKSP1/012 The Electric Vehicle and Charging Infrastructure Development in China Submitted by: PetroChina Planning and Engineering Institute APEC Electromobility Workshop Santiago, Chile 1-2 February 2018 The EV and Charging Infrastructure Development in China Workshop on Electromobility: Infrastructure and Workforce Development 1 & 2 February 2018 Santiago, Chile Yue Xiaowen PetroChina Planning and Engineering Institute 1 Content EV development Charging infrastructure development Case study Conclusion 2 EV development 2016-2020 2011-2015 2001 2009 China has The EV demonstration launched the city plan has been It was the initial major research EV application will implemented. stage of projects on EV. be scaled up and industrialization EVs will strive to of EVs. have the market competitiveness for BEV: Battery Electric Vehicle (BEV) commercialized EV here promotion. PHEV: Plug-in Hybrid Electric Vehicle ( PHEV) 3 EV development • Since 2015 China has become the largest EV sales in China (thousands) 800 electric car market in the world. PHEV BEV • In 2017, the EV sales in China achieved 600 nearly 800 thousand with a 2.7% market 400 share. The EV stock reached 1.7 million, accounting for 0.8% of total motor vehicles 200 in circulation in China. 0 EV market share in China (%) 2011 2012 2013 2014 2015 2016 2017 3.0 EV stock in China (thousands) 1800 2.5 PHEV 1500 2.0 BEV 1200 1.5 900 1.0 600 0.5 300 0.0 0 2011 2012 2013 2014 2015 2016 2017 2011 2012 2013 2014 2015 2016 2017 http://www.caam.org.cn/ 4 EV development Top 10 models in China as of November 2017 (thousands) BAIC EC-Series Zhidou D2 EV BYD Song PHEV JAC iEV6S/E BYD e5 53% market share Geely Emgrand EV Chery eQ SAIC Roewe eRX5 PHEV BYD Qin PHEV Zotye E200 https://evobsession.com/ 0 5 10 15 20 25 30 35 40 45 50 55 60 65 5 EV development • It has been basically formed a complete industrial chain, including raw material supply, power battery production, vehicle control unit design, etc. -
Renewable Energy Technologies Student Book NQF Level 4
GREEN SKILLS FOR JOBS Student Book Renewable Energy Technologies NQF Level 4 Introduction to Renewable Energy and Energy Effi ciency Textbook provided free of charge by the Skills for Green Jobs Programme ! For classroom use only! Not for resale or redistribution without further permission! Editor Skills for Green Jobs (S4GJ) Programme Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices: Bonn and Eschborn GIZ Office Pretoria P.O. Box 13732, Hatfield 0028 Hatfield Gardens, Block C, 1st Floor, 333 Grosvenor Street Pretoria, South Africa Tel.: +27 (0) 12 423 5900 E-mail: [email protected] www.giz.de 1st Edition Responsible: Edda Grunwald Authors: S4GJ Team Illustrations, Layout: WARENFORM Photos: Dörthe Boxberg, Ralf Bäcker, version-foto Pretoria, September 2017 CONTENTS List of Figures and Tables 3 Glossary 12 Preface 26 Foreword 27 Using this Student Book 28 Topic 1 1. Introduction to Renewable Energy Resources and Energy Effi ciency 29 1.1 Economic and Environmental Benefits of Wind Power Systems 30 1.1.1 Wind Power Applications: A Short History 31 1.1.2 Wind Energy Markets in South Africa and the World 41 1.1.3 Advantages and Disadvantages of Wind Power Generation 50 1.2 Economic and Environmental Benefits of Hydrogen Fuel Cell Technology and E-Mobility 61 1.2.1 Hydrogen and Fuel Cell Technologies 62 1.2.2 E-Mobility 75 Topic 2 2. Basic Scientifi c Principles and Concepts 85 2.1 Basic Principles of Wind Power Generation 86 2.1.1 What Causes Wind? 87 2.1.2 Wind Power Factors 94 2.1.3 Essential Wind Turbine Components and their Functions 107 2.1.4 Wind Turbine Types 132 2.2 Basic Principles of Battery and Fuel Cell Technologies 146 2.2.1 Electrochemical Processes in Batteries 147 2.2.2 Electrochemical Processes in Fuel Cells 169 2.3 Basic Principles of E-Mobility 188 2.3.1 Eco-Car Types Compared 189 2.3.2 Essential E-Car Components and their Functions 203 Topic 3 3. -
China Autos Asia China Automobiles & Components
Deutsche Bank Markets Research Industry Date 18 May 2016 China Autos Asia China Automobiles & Components Vincent Ha, CFA Fei Sun, CFA Research Analyst Research Analyst (+852 ) 2203 6247 (+852 ) 2203 6130 [email protected] [email protected] F.I.T.T. for investors What you should know about China's new energy vehicle (NEV) market Many players, but only a few are making meaningful earnings contributions One can question China’s target to put 5m New Energy Vehicles on the road by 2020, or its ambition to prove itself a technology leader in the field, but the surge in demand with 171k vehicles sold in 4Q15 cannot be denied. Policy imperatives and government support could ensure three-fold volume growth by 2020, which would make China half of this developing global market. New entrants are proliferating, with few clear winners as yet, but we conclude that Yutong and BYD have the scale of NEV sales today to support Buy ratings. ________________________________________________________________________________________________________________ Deutsche Bank AG/Hong Kong Deutsche Bank does and seeks to do business with companies covered in its research reports. Thus, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. Investors should consider this report as only a single factor in making their investment decision. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. MCI (P) 057/04/2016. Deutsche Bank Markets Research Asia Industry Date China 18 May 2016 Automobiles & China -
Alixpartners Automotive Electrification Index Second Quarter 2017 ALIXPARTNERS AUTOMOTIVE ELECTRIFICATION INDEX Alixpartners Automotive Electrification Index E-Range
AlixPartners Automotive Electrification Index Second Quarter 2017 ALIXPARTNERS AUTOMOTIVE ELECTRIFICATION INDEX AlixPartners Automotive Electrification Index e-range • By automaker, segment, region, and country E-RANGE = • Note: e-range does not include range from internal-combustion- engine (ICE) sources in plug-in hybrids—only the battery range Sum of electric is included range of all electric • The e-range attempts to rank the electrically driven range, and vehicles (EV) sold as such, does not include non-plug-in hybrids (HEVs) such as the standard Toyota Prius 2 ALIXPARTNERS AUTOMOTIVE ELECTRIFICATION INDEX AlixPartners Automotive Electrification Index ICE-vehicle equivalent market share • By automaker, segment, region, and country Using e-range data, • Full-ICE-equivalent EVs are defined as the electric range of the we can calculate an vehicle sold divided by 311 miles (500 km) ICE-vehicle • Note: to make the EV equivalent to an internal combustion engine equivalent vehicle (ICE), the 311-mile (500-km) range approximates an market share equivalent range between fill-ups for ICE vehicles. Dividing by this factor results in a more illuminating view of overall electrification, Total number of as it counts vehicles with high-electric ranges as full alternatives full-ICE-equivalent- to ICE vehicles and discounts small range city cars or compliance range EVs sold vehicles Total number of • Note: range of the ICE vehicles are not normalized to 311 miles (500 km)—each ICE unit sold is counted as a full vehicle vehicles sold (EV and ICE) 3