Flora of St. Helena Island (Straits of Mackinac), Michigan

Total Page:16

File Type:pdf, Size:1020Kb

Flora of St. Helena Island (Straits of Mackinac), Michigan 2001 THE MICHIGAN BOTANIST 27 FLORA OF ST. HELENA ISLAND (STRAITS OF MACKINAC), MICHIGAN Edward G. Voss Herbarium, University of Michigan, 3600 Varsity Drive, Suite 112 Ann Arbor, Michigan 48108-2287 BACKGROUND Islands have long fascinated people. They are home to mythological heroes and to monsters. They are refuges from daily life or they are destinations for (often ecologically damaging) intensive recreation. They come in all sizes, from the aptly named “Lone Tree Island” in the Isle Royale archipelago to entire con- tinents. They inspire affectionate poetry and sayings. “If once you have slept on an island, You’ll never be quite the same; . .” (Rachel Field) The subject of this report has fascinated me for as long as I can remember. Soon after my grandparents (in 1930) acquired a cottage on the Straits of Mack- inac, west of Mackinaw City, the dim red blinking beacon of the lighthouse seemed to call from 8 miles across the water, on uninhabited St. Helena Island not far from the mainland of Mackinac County. Great rising plumes of smoke from a fire on St. Helena in the mid 1950s were visible from the cottage window. In 1958, Prentiss M. Brown, Jr., who had held an undivided two-thirds interest in St. Helena since about 1920, kindly granted me permission to botanize on the is- land, but not for 10 more years was it possible actually to set foot there for ini- tial botanical exploration (thanks to a friendly boat-owning Mackinaw neighbor, John W. Childs). In the summer of 2001 this island was acquired as a nature preserve by the Little Traverse Conservancy, financed by private donations. So it is timely to present a botanical inventory—a work long in progress, particularly for the ben- efit of visitors to the island. The naming of St. Helena seems to be lost in obscurity. Apparently the oldest map to name it (in French, as were all maps printed in France) “I. Se. Helene” was published in 1744, the well known (and more than once reprinted) “Carte des Lacs du Canada . .” by Jean Nicolas Bellin, engineer and hydrographer for the French navy. It was issued to accompany the first published edition of the journal of Father Pierre F. X. Charlevoix, recounting his travels to the western Great Lakes in 1721. The island is, however, not mentioned in Charlevoix’s text. Did he learn of the name from local sources? Or did he christen it himself? Or did the name come to the map-maker’s attention between 1721 and publication in 1744? And whom does it honor? In western New France, does it merely repeat the name of the island in the St. Lawrence River, at Montréal, christened by Samuel de Champlain in 1611, in honor of his wife, Hélène Boullé, “the first Frenchwoman of gentle birth to sail up the St. Lawrence” (Thomson 1966)? 28 THE MICHIGAN BOTANIST Vol. 40 (They had just been married early that year, before he returned to Québec.) Charlevoix passed through the Straits of Mackinac much earlier in the year than St. Helen’s day (August 18—although in the Orthodox Church May 21 is the date). The map was published before Napoleon was even born, so his exile to an island of the same name off the coast of Africa could not have been relevant. However, the African island was discovered and named in 1502 (reputedly on May 21) by the Portuguese and was considered a pleasant, beautiful shelter— just as the island in Michigan. The volcanic African island is about 130 times the area of the Michigan one and rises to more than 2850 feet above sea level, so any further comparisons would be odious (see Ashmole & Ashmole 2000 for infor- mation on the other St. Helena). Perhaps our St. Helena was named directly in honor of St. Helen herself, wife of the Emperor Constantine and mother of Con- stantine the Great; she founded a number of churches, including the Church of the Nativity in Bethlehem A.D. 327. Then there was James le Moyne, Sieur de St. Hélène, who was born in Montréal in 1659 and received his name from the island there. He was a member of the party which arrived at the head of Hud- son’s Bay in June of 1686 and captured British forts there, giving France mas- tery of the southern part of Hudson’s Bay. He was later mortally wounded fight- ing the British in 1690. One (if French) might have named an island in honor of such a hero. St. Helena Island was of relatively little importance in the early fur-trading days, when canoes traveled close to the mainland shore, and it is doubtful whether native Americans ever regularly resided there, although it was “a fa- vorite resort of theirs.” (Davis 1947) The fishing industry and the ascendency of the sailboat over the canoe, brought more usage to the deep-water and sheltered harbor on the northeast side of the island, facing the mainland a little more than a mile and a half to the northeast. Davis (1947) surmises that by 1849, when the island was patented to William Belote, there was probably quite a settlement on it, at least in the summer. With the advent of wood-burning steamships, St. He- lena became a regular stop for firewood, as did other wooded islands in the Great Lakes. It seems to me quite possible that much of the island’s forest was cut for fuel at this time. The only formal lumbering has been very little, for cedar posts (P. M. Brown, pers. comm.). The Newton brothers (Archibald, Wilson, and Obadiah) bought out Belote about 1853 and the island remained in their family for many years. Mrs. Davis describes how they operated a large store, taking fish for marketing in payment and also buying furs, as well as tons of maple sugar from Cross Village. During the greatest prosperity of St. Helena—before the Civil War—merchants at Cheboygan and Mackinac Island would send to St. Helena for supplies when they ran out of groceries, for it was the only commercial establishment in many miles. It had a good library, and a school was conducted in the winter as well as summer. There was a time when Mormons from Beaver Island raided the fisher- men of the region, even landing on St. Helena, and the Newtons nearly went bankrupt. After the Mormon “King Strang” was shot in 1856, it was men from St. Helena who led the expedition to drive the Mormons from Beaver Island. St. Helena was noted for its elegant parties, dances, and banquets into the 1880s. A 71-foot-tall lighthouse was constructed at the southeast end of St. Helena in 2001 THE MICHIGAN BOTANIST 29 1873 and first lit in September of that year; for many years a flashing red light, oil-powered, visible 13 miles, guided ships bound westward through the Straits of Mackinac. The light was changed to an automatic acetylene operation in 1922 and the keepers were discontinued in 1923. In November 1953 the power source was changed from acetylene to electricity. The light was later changed from flashing red to white. Still later, solar power prevailed and the white light now flashes every six seconds, year round but only at night. Restoration was started in 1986 by the non-profit Great Lakes Lighthouse Keepers Association, which continues to pay great care to authenticity, with much help from volunteers and Boy Scouts, especially Ann Arbor Troops (later merged) 4 and 61 (see Franklin 1991). In 1988 St. Helena Light Station was added to the National Registry of Historic Places. In 1997 the GLLKA received through legislative transfer a quit- claim deed to the Light Station (including 2 acres, the only portion of the island not in the new preserve). Today there is little evidence of any other former human occupancy of the is- land—a few tumbledown timbers and foundations; spreading lilacs and other or- namentals at the “townsite” by the harbor; a child’s grave and some rotting rail fences in cedar thickets. The last permanent resident, with the permission of the owners, was a recluse named John Easton, whose good house burned in 1923, after which he moved into another old house, where he died in the l950s. For many years, mainland residents turned their dogs loose on the island to keep them from being a nuisance in the summer. The interior of the island was se- verely burned in the mid 1950s. BOTANICAL EXPLORATION The first botanical records from this island date from August of 1810, when Thomas Nuttall evidently stopped there en route from Mackinac Island to Green Bay (Voss 1978). He was traveling with a fur-trading party on the way to his more distant destinations in the Northwest Territory. Unfortunately, no spec- imens nor entries in his diary exist for this portion of his journey. However, in his Genera of North American Plants, and a Catalogue of the Species, to the year 1817, published in l8l8, Nuttall does make two explicit references to the island: Primula farinosa [now known as P. mistassinica]: “On the calcareous gravelly shores of the Islands of Lake Huron; around Michilimakinak, Bois Blanc, and St. Helena, in the outlet of Lake Michigan: abundant, v. v. sine fl.” [the Latin abbreviation meaning seen alive with- out flowers] Calypso americana [now included in C. bulbosa]: “v. v. sine fl. on the island of St. Helena. near the outlet of Lake Michigan, in the shade of Abies canadensis attached to recent veg- etable soil. (1811).” While the Primula (bird’s-eye primrose) is to this day common on St.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • The Biology of Canadian Weeds. 146. Lapsana Communis L
    The Biology of Canadian Weeds. 146. Lapsana communis L. Ardath Francis1, Stephen J. Darbyshire1, David R. Clements2, and Antonio DiTommaso3 1Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Wm. Saunders Bldg. #49, Ottawa, Ontario, Canada KIA 0C6 (e-mail: [email protected]); 2Biology Department, Trinity Western University, 7600 Glover Road, Langley, British Columbia, Canada V2Y 1Y1; and 3Department of Crop and Soil Sciences, 903 Bradfield Hall, Cornell University, Ithaca, NY 14853 USA. Received 17 August 2010, accepted 20 December 2010. Francis, A., Darbyshire, S. J., Clements, D. R. and DiTommaso, A. 2011. The Biology of Canadian Weeds. 146. Lapsana communis L. Can. J. Plant Sci. 91: 553Á569. Nipplewort, Lapsana communis, is an annual weed of the Asteraceae native to Europe and western Asia, first detected in northeastern and Pacific northwestern regions of North America in the 19th century. It appears to have been introduced as a contaminant of imported garden material and seeds, but may also have been deliberately introduced as a medicinal herb. After a century of remaining close to its original points of introduction in gardens and ruderal habitats, it spread to neighbouring areas, and now occurs across southern Canada and in many areas of the United States. Possible reasons for this range expansion include forest clearance and changing crop management practices as was observed in Europe, where this plant has become an important weed in grain, forage and vegetable crops. In Ontario, L. communis has recently emerged as a weed in wheat (Triticum aestivum), corn (Zea mays) and soybean (Glycine max) fields.
    [Show full text]
  • Suitability of Root and Rhizome Anatomy for Taxonomic
    Scientia Pharmaceutica Article Suitability of Root and Rhizome Anatomy for Taxonomic Classification and Reconstruction of Phylogenetic Relationships in the Tribes Cardueae and Cichorieae (Asteraceae) Elisabeth Ginko 1,*, Christoph Dobeš 1,2,* and Johannes Saukel 1,* 1 Department of Pharmacognosy, Pharmacobotany, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria 2 Department of Forest Genetics, Research Centre for Forests, Seckendorff-Gudent-Weg 8, Vienna A-1131, Austria * Correspondence: [email protected] (E.G.); [email protected] (C.D.); [email protected] (J.S.); Tel.: +43-1-878-38-1265 (C.D.); +43-1-4277-55273 (J.S.) Academic Editor: Reinhard Länger Received: 18 August 2015; Accepted: 27 May 2016; Published: 27 May 2016 Abstract: The value of root and rhizome anatomy for the taxonomic characterisation of 59 species classified into 34 genera and 12 subtribes from the Asteraceae tribes Cardueae and Cichorieae was assessed. In addition, the evolutionary history of anatomical characters was reconstructed using a nuclear ribosomal DNA sequence-based phylogeny of the Cichorieae. Taxa were selected with a focus on pharmaceutically relevant species. A binary decision tree was constructed and discriminant function analyses were performed to extract taxonomically relevant anatomical characters and to infer the separability of infratribal taxa, respectively. The binary decision tree distinguished 33 species and two subspecies, but only five of the genera (sampled for at least two species) by a unique combination of hierarchically arranged characters. Accessions were discriminated—except for one sample worthy of discussion—according to their subtribal affiliation in the discriminant function analyses (DFA). However, constantly expressed subtribe-specific characters were almost missing and even in combination, did not discriminate the subtribes.
    [Show full text]
  • Squilchuck State Park
    Rare Plant Inventory and Community Vegetation Survey Squilchuck State Park Cypripedium montanum,mountain lady’s-slipper, on the state Watch list, present at Squilchuck State Park Conducted for The Washington State Pakrs and Recreation Commission PO Box 42650, Olympia, Washington 98504 Conducted by Dana Visalli, Methow Biodiversity Project PO Box 175, Winthrop, WA 98862 In Cooperation with the Pacific Biodiversity Institute December 31, 2004 Rare Plant Inventory and Community Vegetation Survey Squilchuck State Park In the summer of 2004, at the request of and under contract to the Washington State Parks Commission, a rare plant inventory and community vegetation survey was conducted at Squilchuck State Park by Dana Visalli and assisting botanists and GIS technicians. Squilchuck State Park is a 263 acre park on the east slope of the Cascade Mountains in Central Washington, located largely in the transition zone between shrub-steppe and montane forest. Plant community polygons were delineated prior to the initiation of field surveys using or- thophotos and satellite imagery. These polygons were then ground checked during the vegetation surveys, which were conducted simultaneously with the rare plant inventories. All plant associa- tions were determined using theField Guide for Forested Plant Associations of the Wenatchee National Forest(Lilybridge et al, 1995) The Douglas-fir dominated forest above the lodge, on the eastern slopes of the park. The forest on this east slope is in places heavily overstocked and the trees supressed. Vegetation surveys and plant inventories were conducted by two field personnel (one bota- nist, one GIS technician) on June 11th, and again by 4 field workers on August 13 (two botanists and two GIS technicians).
    [Show full text]
  • (Dr. Sc. Nat.) Vorgelegt Der Mathematisch-Naturwissenschaftl
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae de Vos, Jurriaan Michiel Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-88785 Dissertation Originally published at: de Vos, Jurriaan Michiel. Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae. 2012, University of Zurich, Facultyof Science. FLOWERS, SEX, AND DIVERSITY. REPRODUCTIVE-ECOLOGICAL AND MACRO-EVOLUTIONARY ASPECTS OF FLORAL VARIATION IN THE PRIMROSE FAMILY, PRIMULACEAE Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftliche Fakultät der Universität Zürich von Jurriaan Michiel de Vos aus den Niederlanden Promotionskomitee Prof. Dr. Elena Conti (Vorsitz) Prof. Dr. Antony B. Wilson Dr. Colin E. Hughes Zürich, 2013 !!"#$"#%! "#$%&$%'! (! )*'+,,&$-+''*$.! /! '0$#1'2'! 3! "4+1%&5!26!!"#"$%&'(#)$*+,-)(*#! 77! "4+1%&5!226!-*#)$%.)(#!'&*#!/'%#+'.0*$)/)"$1'(12%-).'*3'0")"$*.)4&4'*#' "5*&,)(*#%$4'+(5"$.(3(-%)(*#'$%)".'(#'+%$6(#7.'2$(1$*.".! 89! "4+1%&5!2226!.1%&&'%#+',!&48'%'9,%#)()%)(5":'-*12%$%)(5"'"5%&,%)(*#'*3' )0"';."&3(#!'.4#+$*1"<'(#'0")"$*.)4&*,.'%#+'0*1*.)4&*,.'2$(1$*.".! 93! "4+1%&5!2:6!$"2$*+,-)(5"'(12&(-%)(*#.'*3'0"$=*!%14'(#'0*1*.)4&*,.' 2$(1$*.".>'5%$(%)(*#'+,$(#!'%#)0".(.'%#+'$"2$*+,-)(5"'%..,$%#-"'(#' %&2(#"'"#5($*#1"#).! 7;7! "4+1%&5!:6!204&*!"#")(-'%#%&4.(.'*3'!"#$%&''."-)(*#'!"#$%&''$"5"%&.' $%12%#)'#*#/1*#*204&4'%1*#!'1*2$0*&*!(-%&&4'+(.)(#-)'.2"-(".! 773! "4+1%&5!:26!-*#-&,+(#!'$"1%$=.! 7<(! +"=$#>?&@.&,&$%'! 7<9! "*552"*?*,!:2%+&! 7<3! !!"#$$%&'#""!&(! Es ist ein zentrales Ziel in der Evolutionsbiologie, die Muster der Vielfalt und die Prozesse, die sie erzeugen, zu verstehen.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Plant Functional Traits Are Correlated with Species Persistence in the Herb
    www.nature.com/scientificreports OPEN Plant functional traits are correlated with species persistence in the herb layer of old‑growth beech forests Giandiego Campetella 1, Stefano Chelli 1*, Enrico Simonetti1, Claudia Damiani2, Sandor Bartha 3,4, Camilla Wellstein 5, Daniele Giorgini1, Nicola Puletti 6, Ladislav Mucina 7,8, Marco Cervellini1,9 & Roberto Canullo 1 This paper explores which traits are correlated with fne‑scale (0.25 m2) species persistence patterns in the herb layer of old‑growth forests. Four old‑growth beech forests representing diferent climatic contexts (presence or absence of summer drought period) were selected along a north–south gradient in Italy. Eight surveys were conducted in each of the sites during the period spanning 1999–2011. We found that fne‑scale species persistence was correlated with diferent sets of plant functional traits, depending on local ecological context. Seed mass was found to be as important for the fne‑scale species persistence in the northern sites, while clonal and bud‑bank traits were markedly correlated with the southern sites characterised by summer drought. Leaf traits appeared to correlate with species persistence in the drier and wetter sites. However, we found that diferent attributes, i.e. helomorphic vs scleromorphic leaves, were correlated to species persistence in the northernmost and southernmost sites, respectively. These diferences appear to be dependent on local trait adaptation rather than plant phylogenetic history. Our fndings suggest that the persistent species in the old‑ growth forests might adopt an acquisitive resource‑use strategy (i.e. helomorphic leaves with high SLA) with higher seed mass in sites without summer drought, while under water‑stressed conditions persistent species have a conservative resource‑use strategy (i.e.
    [Show full text]
  • Flora of the Illinois Audubon Society's Lusk Creek Property in Pope
    FLORA OF THE ILLINOIS AUDUBON SOCIETY’S LUSK CREEK PROPERTY IN POPE COUNTY, ILLINOIS Report to the Illinois Audubon Society by John White Ecological Services Flora of the Illinois Audubon Society’s Lusk Creek Property in Pope County, Illinois Summary ...................................................1 I. Introduction ...............................................2 Purpose...............................................2 Study area .............................................2 Procedure .............................................2 II. Inventory of the flora........................................3 Scientific name.........................................3 Common name .........................................3 Nativity...............................................3 Abundance ............................................4 Vegetation management concern ...........................5 Species documented by the present study.....................6 Species reported by Mark Basinger .........................7 Species reported by Bill Hopkins ...........................7 Habitat................................................7 Notes.................................................8 Treatment of varieties....................................8 Table 1: Flora of the Illinois Audubon Society’s Lusk Creek property . 10 III. Analysis of the flora .......................................31 Species documented by the present study and by Mark Basinger . 31 Bill Hopkins’ floristic inventory ...........................32 Botanical hotspots......................................33
    [Show full text]
  • Vascular Flora and Geoecology of Mont De La Table, Gaspésie, Québec
    RHODORA, Vol. 117, No. 969, pp. 1–40, 2015 E Copyright 2015 by the New England Botanical Club doi: 10.3119/14-07; first published on-line March 11, 2015. VASCULAR FLORA AND GEOECOLOGY OF MONT DE LA TABLE, GASPE´ SIE, QUE´ BEC SCOTT W. BAILEY USDA Forest Service, 234 Mirror Lake Road, North Woodstock, NH 03262 e-mail: [email protected] JOANN HOY 21 Steam Mill Road, Auburn, NH 03032 CHARLES V. COGBILL 82 Walker Lane, Plainfield, VT 05667 ABSTRACT. The influence of substrate lithology on the distribution of many vascular and nonvascular plants has long been recognized, especially in alpine, subalpine, and other rocky habitats. In particular, plants have been classified as dependent on high-calcium substrates (i.e., calcicoles) based on common restriction to habitats developed in calcareous rocks, such as limestone and marble. In a classic 1907 paper on the influence of substrate on plants, M. L. Fernald singled out a particular meadow on Mont de la Table in the Chic-Choc Mountains of Que´bec for its unusual co-occurrence of strict calcicole and calcifuge (i.e., acidophile) plant taxa. We re-located this site, investigated substrate factors responsible for its unusual plant diversity, and documented current plant distributions. No calcareous rocks were found on site. However, inclusions of calcareous rocks were found farther up the mountain. The highest pH and dissolved calcium concentrations in surface waters were found in a series of springs that deliver groundwater, presumably influenced by calcareous rocks up the slope. Within the habitat delineated by common occurrences of calcicole species, available soil calcium varied by a factor of five and soil pH varied by almost 1.5 units, depending on microtopography and relative connection with groundwater.
    [Show full text]
  • Dissertation
    DISSERTATION Titel der Dissertation Exudate flavonoids in Primulaceae: comparative studies of chemodiversity aspects Verfasserin Mag. rer. nat. Tshering Doma Bhutia angestrebter akademischer Grad Doktorin der Naturwissenschaften (Dr. rer. nat.) Wien, 2013 Studienkennzahl lt. Studienblatt: A 091 438 Dissertationsgebiet lt. Studienblatt: Botanik Betreuerin / Betreuer: Ao. Univ. Prof. Dr. Karin Valant-Vetschera Acknowledgements It is my great pleasure to thank all those who, with their help and support, have contributed to the completion of this thesis. First and foremost I would like to express my sincere and heartfelt gratitute to my supervisor Assoc. Prof. Dr. Karin Valant‐Vetschera for giving me the opportunity to join the “Chemodiversity Group”. I thank her for assuming the dual role of supervisor and mentor. During the years of my diploma and doctoral theses she has continuously offered me the best guidance, support and advice I could have asked for. I am very grateful to Dr. Lothar Brecker for the characterization and identification of the isolated compounds. Additionally, I thank him for his constant encouragement, support and valuable suggestions. In the lab I have always received invaluable technical support from Mag. Johann Schinnerl, for which I extend him my earnest thanks and appreciation. Prof. Dr. Harald Greger has been very kind and supportive throughout the years, which I gratefully appreciate. Thanks are also due to Prof. Dr. Irene Lichtscheidl and Dr. Wolfram Adlassnig for providing access to their laboratory equipment and for their excellent guidance. I am deeply indebted to Prof. Eckhard Wollenweber (Institut für Botanik der TU Darmstadt, Germany) for the constant supply of authentic flavonoid samples, which made my lab life a lot easier.
    [Show full text]
  • Wisconsin Flora Tour Introduction to Course Numbers of Families, Genera
    Vascular Flora of Wisconsin 20 January 2009 Wisconsin Flora Tour Introduction to course Numbers of families, genera and species within major groupings in Wisconsin Group Families Genera Species Species Total Native Introduced Cryptogams 13 31 112 0 112 Gymnosperms 3 8 15 2 17 Angiosperms Dicotyledons 115 575 1161 573 1734 Monocots 27 171 601 106 707 TOTAL 158 785 1889 681 2570 Largest families (50 or more taxa) and genera (15 or more taxa) in the Wisconsin flora Family No. of Taxa Genus No. of Taxa Asteraceae 373 Carex (sedge) 168 Poaceae 254 Aster (aster) 80 Cyperaceae 251 Rubus (raspberry) 55 Rosaceae 187 Crateagus (hawthorn) 47 Fabaceae 88 Viola (violet) 33 Brassicaceae 87 Panicum (panic grass) 32 Scrophulariaceae 75 Potamogeton (pondweed) 32 Lamiaceae 72 Salix (willow) 31 Caryophyllaceae 63 Polygonum (smartweed) 30 Orchidaceae 57 Solidago (goldenrod) 30 Ranunculaceaee 53 Juncus (rush) 29 Helianthus (sunflower) 20 Ranunculus (buttercup) 20 Chenopodium (chenopod) 19 Eleocharis (spikerush) 19 Lonicera (honeysuckle) 18 Veronica (veronica) 18 Rosa (rose) 16 Galium (bedstraw) 15 Source: Wisconsin State Herbarium (http://www.botany.wisc.edu/herbarium/) Four major floristic elements in the Wisconsin flora Boreal Alleghenian Ozarkian Prairie Two floristic provinces Northern hardwood Prairie forests Tension Zone Brief look at four plant communities Beech maple or southern mesic Oak forest or southern xeric Prairie Bog or fen Vascular Flora of Wisconsin 22 January 2009 Nomenclature and Vascular Cryptogams I Nomenclature vs. Classification Rank
    [Show full text]
  • Reproductive Biology of Island and Mainland Populations of Primula Mistassinica (Primulaceae) on Lake Huron Shorelines
    1819 Reproductive biology of island and mainland populations of Primula mistassinica (Primulaceae) on Lake Huron shorelines Brendon M.H. Larson and Spencer C.H. Barrett Abstract: To investigate the influence of insularity on plant reproductive biology at a local geographic scale, we examined aspects of reproduction in distylous Primula mistassinica Michx. (Primulaceae) on Lake Huron shorelines of the Bruce Peninsula and adjacent Tobermory Islands in Ontario, Canada. A total of 7 mainland and 13 nearshore island populations were compared. Controlled pollinations demonstrated that P. mistassinica possesses a dimorphic incompatibility system with intermorph crosses setting significantly more seeds than self or intramorph crosses. Floral morphology, population style-morph ratios, and seed fertility were compared in mainland and nearshore island populations to determine whether there was evidence for differences in reproductive traits between these areas. Style-morph ratios did not differ significantly from equilibrium expectations, and there were no consistent differences between island and mainland populations in floral morphology or fertility. Rather, the generalized pollination system of P. mistassinica and extensive historical opportunities for colonization appear to have mitigated insular effects so that proximate ecological factors are more relevant to the current reproductive biology of populations. Key words: distyly, insularity, pollination, reproductive biology. Résumé : Afin d’étudier l’influence de l’insularité sur la biologie reproductive des plantes à l’échelle géographique locale, les auteurs ont examiné des aspects de la reproduction chez le Primula mistassinica Michx. (Primulaceae) distyle, venant sur les rives du lac Huron bordant la péninsule de Bruce et sur les îles Tobermory adjacentes, en Ontario, au Canada. Ils ont comparé au total 7 populations continentales et 13 populations insulaires riveraines.
    [Show full text]