data Article A Novel Hybrid Model for Stock Price Forecasting Based on Metaheuristics and Support Vector Machine Mojtaba Sedighi 1,2,* , Hossein Jahangirnia 3, Mohsen Gharakhani 4 and Saeed Farahani Fard 5 1 Department of Finance, Qom Branch, Islamic Azad University, Qom 3749113191, Iran 2 Young Researchers and Elite Club, Qom Branch, Islamic Azad University, Qom 88447678, Iran 3 Department of Accounting, Qom Branch, Islamic Azad University, Qom 3749113191, Iran;
[email protected] 4 Department of Finance, Iranian Institute of Higher Education, Tehran 13445353, Iran;
[email protected] 5 Department of Management and Economics, University of Qom, Qom 3716146611, Iran;
[email protected] * Correspondence:
[email protected] Received: 2 May 2019; Accepted: 20 May 2019; Published: 22 May 2019 Abstract: This paper intends to present a new model for the accurate forecast of the stock’s future price. Stock price forecasting is one of the most complicated issues in view of the high fluctuation of the stock exchange and also it is a key issue for traders and investors. Many predicting models were upgraded by academy investigators to predict stock price. Despite this, after reviewing the past research, there are several negative aspects in the previous approaches, namely: (1) stringent statistical hypotheses are essential; (2) human interventions take part in predicting process; and (3) an appropriate range is complex to be discovered. Due to the problems mentioned, we plan to provide a new integrated approach based on Artificial Bee Colony (ABC), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Support Vector Machine (SVM).