The Difficulties in Evaluating A

Total Page:16

File Type:pdf, Size:1020Kb

The Difficulties in Evaluating A that the A-weighting curve over corrected S&V OBSERVER the low frequency weighting, resulting in artificially low numbers. Even the linear The Difficulties in Evaluating sound level measurements (a 2 dB differ- ence) did not really reflect what I was A-Weighted Sound Level Measurements hearing. John M. Masciale, Data Physics Corporation, San Jose, California Further analysis showed that in look- ing at loudness below 2 Bark the first It has been known for a long time that octave bands. Method A calculates loud- snow blower had a loudness of 6.8 Sones, the frequency response of human hearing ness using the Stevens method. Method while the second snow blower had a is anything but linear. In 1933 Fletcher B (which is the more commonly used loudness of 2.8 Sones. The first snow and Munson generated their Equal Loud- method) performs the calculations based blower was nearly two and one half times ness Curves. These curves compare on the work of Zwicker, and is referred to as loud in the lower frequency range. sound at different frequencies and levels, as Zwicker loudness. Looking above 17 bark I found that the and are plotted for different Phon levels. The calculation of loudness is based on first Snow Blower had a loudness of 16.5 Each Phon level is defined by the deci- measurements in critical bands (denoted Sones, whereas the second snow blower bel level at 1000 Hz. Hence the 40 Phon in Bark). Figure 2 is a graph of critical had a loudness of 13.8 Sones. From these curve is a plot of the amplitude of single band number versus log frequency. The numbers, I can see that the low frequency tones at different frequencies that sound resulting amplitudes for each critical noise content was the most markedly dif- as loud as a tone at 1000 Hz and 40 dB. band are usually denoted in Sones/Bark. ferent and significant, which agrees with To improve on acoustic measurements, The area under the specific loudness what I was hearing. weighting curves were created to com- curve results in a total loudness number Conclusion. There is a place for the use pensate for sound at different levels. The in Sones. The convenience of measuring of A-weighted measurements. A-weight- A-weighting curve was created to com- in Sones is that, unlike dB, they correlate ing is a convenient standardized proce- pensate for sound along the 40 Phon con- to human hearing. Therefore, if measure- dure that may be used for comparing tour, the B weighting curve was created ment A is 20 Sones and measurement B simple measurements. It is unrealistic, to compensate for sound along the 70 is 40 Sones, measurement B will sound however, in most circumstances to expect Phon contour, and the C weighting curve twice as loud as measurement A. A-weighted measurements to correlate was created to compensate for sound Example Measurement and Compari- well with a subjective evaluation of loud- along the 100 Phon contour. son. The best way to illustrate some of the ness. Loudness is one of several psychoa- To properly take a measurement using difficulties in comparing A-weighted coustic parameters that can be used to these weighting curves, the user was sup- measurements is to compare measure- quantize the subjective evaluation of posed to look at the overall sound pres- ments of similar sound pressure levels. I noise, and is readily available as a mea- sure level, and then select the appropri- recently purchased a new snow blower. surement in current acoustical instru- ate weighting curve. This is not a bad In comparing the sound of the old one mentation. approach for highly tonal noise, or flat with the new, I found that the older ma- random noise, but there can be a lot of chine seemed to be significantly louder 140 pitfalls trying to measure sound with dif- than the new. The sound of the old ma- ferent amplitudes at different frequencies chine seemed to go right through me. Yet 120 (which is the case for most noise mea- when I measured the A-weighted sound surements). pressure level of the two machines there 100 was only a 1 dB difference. 90 Phons When trying to standardize acoustic 80 noise measurements, people found that Figure 3 shows the 1/3 octave spectra 70 Phons this approach led to a lot of confusion. As of the sound pressure levels of the two 60 a result, most noise measurement stan- snow blowers. Snow blower 1 resulted in Equivalent Loudness, dB 40 dards settled on the A-weighting curve to a sound pressure level of 85 dBA. Snow 40 Phons use in taking a measurement. There might blower 2 resulted in a sound pressure 20 be good accuracy in measuring things level of 84 dBA. A 1 dB difference in 10 100 1k10k Frequency, Hz that are operating in a quiet room. But for measurement is typically not considered any sound pressure measurements at or perceivable in terms of overall loudness, Figure 1. Comparison of three equal loudness above the sound pressure level of a typi- yet my ears were telling me otherwise. contours with the A-weighted frequency re- cal conversation, this can lead to mea- Looking at the frequency content you can sponse network. surements that have little to do with per- see that snow blower 1 has considerably ceived noise levels. more low frequency energy than snow A Weighting Versus Equal Loudness. blower 2. Figure 4 shows the same mea- 24 Figure 1 shows the inverted A weighting surements with A-weighted 1/3 octave 20 contour plotted on top of the equal loud- bands. Because of the propensity of the 16 ness curves at 40 Phons, 70 Phons, and A-weighting curve to attenuate low fre- 12 100 Phons. It is plain to see that at 40 quency noise, the dBA calculation is 8 Phons there is fair correlation, but the dominated by the higher amplitude infor- 4 higher you go in loudness level the mation at the higher frequencies. Critical Band Numbers, Bark 0 poorer the correlation, especially at lower I then decided to take a look at the spe- 10 100 1k10k frequencies. cific loudness of the two machines (Fig- Frequency, Hz In an effort to better correlate human ure 5). It is plain to see that the most sub- hearing with measured sound pressure stantial difference between the two Figure 2. Critical band number vs. frequency. levels, various techniques of measuring machines is in both the lower and higher loudness have been developed. ISO stan- frequency range. The total loudness of 71 dard 532 Acoustics – Method for Calcu- Sones versus 63 Sones indicates that the lating Loudness Level outlines two differ- first snow blower is perceptibly louder ent methods for calculating the human than the second snow blower. The reason perceived loudness of complex sound that the loudness measurement corre- that has been measured in octave or 1/3 lated better with what I was hearing is 2 OBSERVERLIB 90 Snow Blower 1 -- 88 dB, 85 dBA Snow Blower 2 -- 86 dB, 84 dBA 80 70 60 50 Sound Pressure Level, dB 40 32 125 500 2000 8000 A L 1/3 Octave Band Center Frequency, Hz Figure 3. Sound pressure levels of two snow blowers. Figure 4. A-weighted sound pressure levels of two snow blowers. 4.5 4.0 3.5 3.0 2.5 2.0 Snow Blower 1 -- 71 Sones 1.5 Snow Blower 2 -- 63 Sones 1.0 Magnitude, Sones/Bark 0.5 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Frequency Band, Bark Figure 5. Specific loudness of two snow blow- ers. OBSERVERLIB 3.
Recommended publications
  • NOISE-CON 2004 the Impact of A-Weighting Sound Pressure Level
    Baltimore, Maryland NOISE-CON 2004 2004 July 12-14 The Impact of A-weighting Sound Pressure Level Measurements during the Evaluation of Noise Exposure Richard L. St. Pierre, Jr. RSP Acoustics Westminster, CO 80021 Daniel J. Maguire Cooper Standard Automotive Auburn, IN 46701 ABSTRACT Over the past 50 years, the A-weighted sound pressure level (dBA) has become the predominant measurement used in noise analysis. This is in spite of the fact that many studies have shown that the use of the A-weighting curve underestimates the role low frequency noise plays in loudness, annoyance, and speech intelligibility. The intentional de-emphasizing of low frequency noise content by A-weighting in studies can also lead to a misjudgment of the exposure risk of some physical and psychological effects that have been associated with low frequency noise. As a result of this reliance on dBA measurements, there is a lack of importance placed on minimizing low frequency noise. A review of the history of weighting curves as well as research into the problems associated with dBA measurements will be presented. Also, research relating to the effects of low frequency noise, including increased fatigue, reduced memory efficiency and increased risk of high blood pressure and heart ailments, will be analyzed. The result will show a need to develop and utilize other measures of sound that more accurately represent the potential risk to humans. 1. INTRODUCTION Since the 1930’s, there have been large advances in the ability to measure sound and understand its effects on humans. Despite this, a vast majority of acoustical measurements done today still use the methods originally developed 70 years ago.
    [Show full text]
  • Decibels, Phons, and Sones
    Decibels, Phons, and Sones The rate at which sound energy reaches a Table 1: deciBel Ratings of Several Sounds given cross-sectional area is known as the Sound Source Intensity deciBel sound intensity. There is an abnormally Weakest Sound Heard 1 x 10-12 W/m2 0.0 large range of intensities over which Rustling Leaves 1 x 10-11 W/m2 10.0 humans can hear. Given the large range, it Quiet Library 1 x 10-9 W/m2 30.0 is common to express the sound intensity Average Home 1 x 10-7 W/m2 50.0 using a logarithmic scale known as the Normal Conversation 1 x 10-6 W/m2 60.0 decibel scale. By measuring the intensity -4 2 level of a given sound with a meter, the Phone Dial Tone 1 x 10 W/m 80.0 -3 2 deciBel rating can be determined. Truck Traffic 1 x 10 W/m 90.0 Intensity values and decibel ratings for Chainsaw, 1 m away 1 x 10-1 W/m2 110.0 several sound sources listed in Table 1. The decibel scale and the intensity values it is based on is an objective measure of a sound. While intensities and deciBels (dB) are measurable, the loudness of a sound is subjective. Sound loudness varies from person to person. Furthermore, sounds with equal intensities but different frequencies are perceived by the same person to have unequal loudness. For instance, a 60 dB sound with a frequency of 1000 Hz sounds louder than a 60 dB sound with a frequency of 500 Hz.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • The Human Ear  Hearing, Sound Intensity and Loudness Levels
    UIUC Physics 406 Acoustical Physics of Music The Human Ear Hearing, Sound Intensity and Loudness Levels We’ve been discussing the generation of sounds, so now we’ll discuss the perception of sounds. Human Senses: The astounding ~ 4 billion year evolution of living organisms on this planet, from the earliest single-cell life form(s) to the present day, with our current abilities to hear / see / smell / taste / feel / etc. – all are the result of the evolutionary forces of nature associated with “survival of the fittest” – i.e. it is evolutionarily{very} beneficial for us to be able to hear/perceive the natural sounds that do exist in the environment – it helps us to locate/find food/keep from becoming food, etc., just as vision/sight enables us to perceive objects in our 3-D environment, the ability to move /locomote through the environment enhances our ability to find food/keep from becoming food; Our sense of balance, via a stereo-pair (!) of semi-circular canals (= inertial guidance system!) helps us respond to 3-D inertial forces (e.g. gravity) and maintain our balance/avoid injury, etc. Our sense of taste & smell warn us of things that are bad to eat and/or breathe… Human Perception of Sound: * The human ear responds to disturbances/temporal variations in pressure. Amazingly sensitive! It has more than 6 orders of magnitude in dynamic range of pressure sensitivity (12 orders of magnitude in sound intensity, I p2) and 3 orders of magnitude in frequency (20 Hz – 20 KHz)! * Existence of 2 ears (stereo!) greatly enhances 3-D localization of sounds, and also the determination of pitch (i.e.
    [Show full text]
  • The Decibel Scale
    Projectile motion - 1 VCE Physics.com The decibel scale • Sound intensity • Sound level: The decibel scale • Sound level calculations • Some decibel measurements • Change in intensity • Human hearing • The Phon scale The decibel scale - 2 VCE Physics.com Sound intensity • The intensity of sound decreases with the square of the distance from the source. power P 2 Sound intensity = I = (unit =W /m ) A area 2 I r P 2 = 1 I = 2 4πr I1 r2 The decibel scale - 3 VCE Physics.com Sound intensity • eg a sound source emitting a power of 1 mW, when heard at a distance of 1 vs 2 m P 1×10−3W I = = = 8×10−5W /m2 A 4π 1m 2 ( ) P 1×10−3W I = = =2×10−5W /m2 A 4π (2m)2 The decibel scale - 4 VCE Physics.com Sound level: The decibel scale • The decibel scale is a relative scale, based upon the threshold of -12 2 hearing I0 = 10 W/m . • It is a logarithmic scale, an increase of 10 corresponds to 10 times the intensity. • 20dB = 102 times, 30dB = 103 times the intensity. I L =10log I 0 L −12 10 2 I =10 W /m I L =10log −12 10 The decibel scale - 5 VCE Physics.com Sound level calculations • eg A sound has the intensity of 10-4 W/m2. This is a sound level of I 10−4 L =10log =10log =10log108 = 80dB I 10−12 0 eg The intensity of a 45 dB sound is L 45 −12 −12 10 10 −7.5 −8 2 I =10 =10 =10 =3.2×10 W /m What is the intensity of 120 dB? L 120 −12 −12 I =1010 =10 10 =100 =1W /m2 The decibel scale - 6 VCE Physics.com Some decibel measurements Source Intensity (W/m2) Sound level (dB) Threshold of hearing 10-12 0 dB Soft whisper 10-10 20 dB Quiet conversation 10-8 40 dB Loud conversation 10-6 60 dB Highway traffic 10-4 80 dB Tractor engine 10-2 100 dB Threshold of pain (Rock concert) 10-0 (1) 120 dB Jet engine (less than 50 m away) 102 (100) 140 dB Rocket launch (less than 500 m away) 104 (10,000) 160 dB + • Damage to hearing is due to both the sound level & exposure time.
    [Show full text]
  • A-Weighting”: Is It the Metric You Think It Is?
    Proceedings of Acoustics 2013 – Victor Harbor 17-20 November 2013, Victor Harbor, Australia “A-Weighting”: Is it the metric you think it is? McMinn, Terrance Curtin University of Technology ABSTRACT It is the generally accepted view that the “A-Weighting” (dBA) curve mimics human hearing to measure relative loudness. However it is not widely appreciated that the “A-Weighting” curve lacks validity especially at low frequen- cies (below 100 Hz) and for sounds above 60 dB. Research in the field of equal loudness has progressed and re- defined the shape of the original 40 phon Munson and Fletcher equal loudness curves. Unfortunately, the “A-Weighting” curve has not been revised in the light of this research or ISO 226. This paper highlights some of the changes in the research and problems identified with “A-Weighting” as it has come into current usage. INTRODUCTION The published paper smoothed the data from a number of The A Weighting was introduced in sound level meters based tests and then curve fitted to produce the figures below. on the American Tentative Standards for Sound Level Meters There is no information in the paper identifying the method Z24.3-1936 for Measurement of Noise and Other Sounds or justification for extrapolation of the curves beyond the test (Cited in Pierre and Maguire 2004). This standard adopted frequency range. the 40 decibel loudness levels of Fletcher and Munson to establish the “Curve A” (A-Weighting) and 70 decibel for the “Curve B” (B-Weighting). However it should be recognized that over time the usage of the “A-Weighting” has changed from that intended in Z24.3-1936.
    [Show full text]
  • Loudness Level
    Loudness level This article was checked by pedagogue This article ws checked by pedagogue, but later was changed. Checked version of the article can be found here (http s://www.wikilectures.eu/index.php?title=Loudness_leve l&oldid=18545). See also comparation of actual and checked version (https:// www.wikilectures.eu/index.php?title=Loudness_level&diff= 21411&oldid=18545). This article was checked by pedagogue This article was checked by pedagogue, but later was changed. What is loudness? This article was checked by pedagogue This article was checked by pedagogue, but later was changed. Loudness is the certain criterion of a sound, which correlate with physical strength of sound(amplitude). Loudness also can scaling a sound, extending from quiet to loud. Sometimes, loudness is confused with other measures of sound strength, such as sound pressure, sound intensity and sound power. However, loudness is much more complex than other types of sound strength. Besides, loudness is also affected by additional parameters other than sound pressure, for example, frequency, bandwidth and duration. Unit of loudness(level) Characteristic of loudness can be shown by certain graph, equal loudness curve. Loudness(or loudness level) can be measured by the phon. Phon The phon is a unit of loudness level for pure tones. Its purpose is to compensate for the effect of frequency on the perceived loudness of tones. This unit was proposed by S. S. Stevens. By definition, the number of phon of a sound is the dB SPL of a sound at a frequency of 1 kHz that sounds just as loud. This implies that 0 phon is the limit of perception, and inaudible sounds have negative phon levels.
    [Show full text]
  • Lecture 1-2: Sound Pressure Level Scale
    Lecture 1-2: Sound Pressure Level Scale Overview 1. Psychology of Sound. We can define sound objectively in terms of its physical form as pressure variations in a medium such as air, or we can define it subjectively in terms of the sensations generated by our hearing mechanism. Of course the sensation we perceive from a sound is linked to the physical properties of the sound wave through our hearing mechanism, whereby some aspects of the pressure variations are converted into firings in the auditory nerve. The study of how the objective physical character of sound gives rise to subjective auditory sensation is called psychoacoustics. The three dimensions of our psychological sensation of sound are called Loudness , Pitch and Timbre . 2. How can we measure the quantity of sound? The amplitude of a sound is a measure of the average variation in pressure, measured in pascals (Pa). Since the mean amplitude of a sound is zero, we need to measure amplitude either as the distance between the most negative peak and the most positive peak or in terms of the root-mean-square ( rms ) amplitude (i.e. the square root of the average squared amplitude). The power of a sound source is a measure of how much energy it radiates per second in watts (W). It turns out that the power in a sound is proportional to the square of its amplitude. The intensity of a sound is a measure of how much power can be collected per unit area in watts per square metre (Wm -2). For a sound source of constant power radiating equally in all directions, the sound intensity must fall with the square of the distance to the source (since the radiated energy is spread out through the surface of a sphere centred on the source, and the surface area of the sphere increases with the square of its radius).
    [Show full text]
  • Sound Sense – by D. Lovegrove, S. Hough
    SOUND (QUALITY) SENSE Many of us would agree that there are a lot of things around us that are too noisy, such as the seats behind the engines on a long flight, an angry two-year-old and the volume of the music system in the car next to us at the stoplight, which shakes our seats. Sometimes, though, it’s not the loudest sounds that are the hardest to live with. It’s the intermittent hiss, or the whine perfectly pitched to set our teeth on edge. When a product or an appliance is manufactured, a vehicle, a toy, a train carriage, anything that people are going to hear or be near, it should sound “right”. Not just quiet enough to be unobjectionable - that’s necessary but not sufficient. It’s got to have that indefinable Sound of Quality, the sound you would wish your car door in closing would make. A truism of sound quality work is that a good lawnmower doesn’t sound like a good refrigerator. Companies who take this sort of thing seriously do jury testing. They may use listeners like their customers to get a better measure of public opinion, or listeners from among their engineers, to gain a better understanding of which elements of the product are making the most objectionable part of the noise. The jury ranks noises according to various rules. The 2 most successful forms of comparison are “Paired Comparison” and “Semantic Differential”. The use of a Fixed Scale (“On a scale of 1-10, how annoying is this noise?”) is generally not recommended.
    [Show full text]
  • The Sonification Handbook Chapter 3 Psychoacoustics
    The Sonification Handbook Edited by Thomas Hermann, Andy Hunt, John G. Neuhoff Logos Publishing House, Berlin, Germany ISBN 978-3-8325-2819-5 2011, 586 pages Online: http://sonification.de/handbook Order: http://www.logos-verlag.com Reference: Hermann, T., Hunt, A., Neuhoff, J. G., editors (2011). The Sonification Handbook. Logos Publishing House, Berlin, Germany. Chapter 3 Psychoacoustics Simon Carlile Reference: Carlile, S. (2011). Psychoacoustics. In Hermann, T., Hunt, A., Neuhoff, J. G., editors, The Sonification Handbook, chapter 3, pages 41–61. Logos Publishing House, Berlin, Germany. Media examples: http://sonification.de/handbook/chapters/chapter3 6 Chapter 3 Psychoacoustics Simon Carlile 3.1 Introduction Listening in the real world is generally a very complex task since sounds of interest typically occur on a background of other sounds that overlap in frequency and time. Some of these sounds can represent threats or opportunities while others are simply distracters or maskers. One approach to understanding how the auditory system makes sense of this complex acoustic world is to consider the nature of the sounds that convey high levels of information and how the auditory system has evolved to extract that information. From this evolutionary perspective, humans have largely inherited this biological system so it makes sense to consider how our auditory systems use these mechanisms to extract information that is meaningful to us and how that knowledge can be applied to best sonify various data. One biologically important feature of a sound is its identity; that is, the spectro-temporal characteristics of the sound that allow us to extract the relevant information represented by the sound.
    [Show full text]
  • FESI DOCUMENT A2 Basics of Acoustics
    FESI DOCUMENT A2 Basics of Acoustics September 2001, 3rd revised edition to be ordered: Thermal Insulation Contractors Association Mr. Ralph Bradley Tica House Allington Way Yarm Road Business Park Darlington DLI 4QB Tel : +44 (0) 1325 734140 direct Fax: +44 (0) 1325 466704 www.tica-acad.co.uk [email protected] Basics of Acoustics Contents A2-0 Intention .......................................................................................................................................2 A2-1 Introduction ..................................................................................................................................2 A2-2 Classification................................................................................................................................3 A2-2.1 Sound Sensation .........................................................................................................................4 A2-2.2 Infrasonic, Audible and Ultrasonic Sound ...................................................................................6 A2-2.3 Airborne, Structureborne, Waterborne Sound.............................................................................7 A2-2.4 Acoustic Insulation and Sound Attenuation.................................................................................8 A2-3 Physical, technical basics............................................................................................................8 A2-3.1 Frequency, Speed of Sound, Wavelength...................................................................................8
    [Show full text]
  • Psychoacoustics of Multichannel Audio
    THE PSYCHOACOUSTICS OF MULTICHANNEL AUDIO J. ROBERT STUART Meridian Audio Ltd Stonehill, Huntingdon, PE18 6ED England ABSTRACT This is a tutorial paper giving an introduction to the perception of multichannel sound reproduction. The important underlying psychoacoustic phenomena are reviewed – starting with the behaviour of the auditory periphery and moving on through binaural perception, central binaural phenomena and cognition. The author highlights the way the perception of a recording can be changed according to the number of replay channels used. The paper opens the question of relating perceptual and cognitive responses to directional sound or to sound fields. 1. INTRODUCTION 3.1 Pitch Multichannel systems are normally intended to present a The cochlea aids frequency selectivity by dispersing three-dimensional sound to the listener. In general, the excitation on the basilar membrane on a frequency- more loudspeakers that can be applied, the more accurately dependent basis. Exciting frequencies are mapped on a the sound field can be reproduced. Since all multichannel pitch scale roughly according to the dispersion (position) systems do not have a 1:1 relationship between transmitted and the integral of auditory filtering function. Several channels and loudspeaker feeds, a deep understanding of scales of pitch have been used; the most common being the human binaural system is necessary to avoid spatial, mel, bark and E.. Fig. 1 shows the inter-relationship loudness or timbral discrepancies. between these scales. This paper reviews some of the basic psychoacoustic The mel scale derives from subjective pitch testing and was mechanisms that are relevant to this topic. defined so that 1000mel º 1kHz.
    [Show full text]