Outcomes and Risk Project for Patients with Rare CNS Cancers a Study for Adults with Central Nervous System (CNS) Cancers

Total Page:16

File Type:pdf, Size:1020Kb

Outcomes and Risk Project for Patients with Rare CNS Cancers a Study for Adults with Central Nervous System (CNS) Cancers NATIONAL CANCER INSTITUTE NCI-CONNECT Patient Engagement Ways adult patients with rare central nervous system (CNS) tumors can participate. NATIONAL CANCER INSTITUTE NCI-CONNECT Patient Engagement Ways adult patients with rare central nervous system (CNS) tumors can participate. If Your Tumor If Your Tumor is is Stable Newly-Diagnosed You do not need treatment or Recurrent or a second opinion. You need treatment or a second opinion. Online Study Clinical Participate in a web-based Assessment questionnaire about your Visit the NIH for an evaluation personal and medical history, If Your Tumor and consultation with our If Your Tumor is symptoms, treatments, and neuro-oncology care team. quality isof life Stable to help us better Newly-Diagnosed Consultations are free. You will understand risk factors and You do not need treatment receive an accurate diagnosis or Recurrent improve patient care. or a second opinion. and treatment guidance. You need treatment or a second opinion. Outcomes and Risk Project for Patients with Rare CNS Cancers A study for adults with central nervous system (CNS) cancers. Objective National Cancer Institute (NCI) researchers are conducting a study of patients with rare CNSNatural cancers. History Study Clinical Trial This study will improve our understanding of outcomes andOnline risk factors related Study to the Clinical Take part in the natural history study, Participate in a rare CNS occurrence of rare brain and spine cancers. Participate in a web-based which includes genetic testing and Assessment tumor clinical trial to help questionnaire about your questionnaires to help us better Visit the NIH for an evaluation doctors determine whether personal and medical history, Research shows that certain risk factors may increase a understand brain and spine tumors. After and consultation with our new treatments are safe and person’s chances of developing cancer. Factors can include symptoms, treatments, and exposure to chemicals or other substances, and personal you are accepted on a study, treatments, neuro-oncology care team. effective and work better and family medical history. quality of life to help us better tests, and other services at the NIH are free. Consultations are free. You will than current treatments. What the study involves: understand risk factors and receive an accurate diagnosis improve patient care. • Fill out an enrollmentNCI Digital and consent form and treatment guidance. • Complete aStyle web-based Guide survey • Mail a saliva sample for genetic testing December 2019 You can participate if you: Tumor Types Include: • Are age 18 or older • Atypical Teratoid Rhabdoid Tumor (ATRT) • Are diagnosedU.S. with Department a rare brain of Health or spinal& Human cord Services tumor | National Institutes• of HealthChoroid Plexus Tumors (Carcinoma, Papilloma, Atypical Papilloma) • Ependymoma • Gliomatosis Cerebri You can participate in this study from home. • Gliosarcoma or Primary CNS Sarcoma It does not require a visit to NIH. It is not a treatment trial. It is a research study. • Medulloblastoma • Meningioma (High Grade) • Midline or Brainstem Gliomas Questions? • Oligodendroglioma • Pineal Region Tumors Contact us at (240) 760-6010 or (Pineoblastoma, Pineocytoma, PTID, PTPR) [email protected] • Pleomorphic Xanthoastrocytoma (PXA) and Anaplastic Pleomorphic Xanthoastrocytoma (APXA) Follow-up Care cancer.gov/nci-connect • Primitive Neuroectodermal Tumors (PNET) Our neuro-oncology care team follows your care and works with your NATIONAL INSTITUTES OF HEALTH NATIONAL CANCER INSTITUTE CENTER FOR CANCER RESEARCH local doctor to ensure you receive the Natural History Study best care during and after treatment. Clinical Trial Take part in the natural history study, Participate in a rare CNS which includes genetic testing and tumor clinical trial to help questionnaires to help us better doctors determine whether understand brain and spine tumors. After new treatments are safe and you are acceptedLearn on a study, more treatments, at: effective and work better tests, and other servicescancer.gov/nci-connect at the NIH are free. than current treatments. Contact us: [email protected] | (240) 760-6530 Share with others to engage patients in NCI-CONNECT. cancer.gov/nci-connect Follow-up Care Our neuro-oncology care team follows your care and works with your local doctor to ensure you receive the best care during and after treatment. Learn more at: cancer.gov/nci-connect Contact us: [email protected] | (240) 760-6530 Share with others to engage patients in NCI-CONNECT. cancer.gov/nci-connect.
Recommended publications
  • Central Nervous System Cancers Panel Members Can Be Found on Page 1151
    1114 NCCN David Tran, MD, PhD; Nam Tran, MD, PhD; Frank D. Vrionis, MD, MPH, PhD; Patrick Y. Wen, MD; Central Nervous Nicole McMillian, MS; and Maria Ho, PhD System Cancers Overview In 2013, an estimated 23,130 people in the United Clinical Practice Guidelines in Oncology States will be diagnosed with primary malignant brain Louis Burt Nabors, MD; Mario Ammirati, MD, MBA; and other central nervous system (CNS) neoplasms.1 Philip J. Bierman, MD; Henry Brem, MD; Nicholas Butowski, MD; These tumors will be responsible for approximately Marc C. Chamberlain, MD; Lisa M. DeAngelis, MD; 14,080 deaths. The incidence of primary brain tumors Robert A. Fenstermaker, MD; Allan Friedman, MD; Mark R. Gilbert, MD; Deneen Hesser, MSHSA, RN, OCN; has been increasing over the past 30 years, especially in Matthias Holdhoff, MD, PhD; Larry Junck, MD; elderly persons.2 Metastatic disease to the CNS occurs Ronald Lawson, MD; Jay S. Loeffler, MD; Moshe H. Maor, MD; much more frequently, with an estimated incidence ap- Paul L. Moots, MD; Tara Morrison, MD; proximately 10 times that of primary brain tumors. An Maciej M. Mrugala, MD, PhD, MPH; Herbert B. Newton, MD; Jana Portnow, MD; Jeffrey J. Raizer, MD; Lawrence Recht, MD; estimated 20% to 40% of patients with systemic cancer Dennis C. Shrieve, MD, PhD; Allen K. Sills Jr, MD; will develop brain metastases.3 Abstract Please Note Primary and metastatic tumors of the central nervous system are The NCCN Clinical Practice Guidelines in Oncology a heterogeneous group of neoplasms with varied outcomes and (NCCN Guidelines®) are a statement of consensus of the management strategies.
    [Show full text]
  • Malignant Glioma Arising at the Site of an Excised Cerebellar Hemangioblastoma After Irradiation in a Von Hippel-Lindau Disease Patient
    DOI 10.3349/ymj.2009.50.4.576 Case Report pISSN: 0513-5796, eISSN: 1976-2437 Yonsei Med J 50(4): 576-581, 2009 Malignant Glioma Arising at the Site of an Excised Cerebellar Hemangioblastoma after Irradiation in a von Hippel-Lindau Disease Patient Na-Hye Myong1 and Bong-Jin Park2 1Department of Pathology, Dankook University College of Medicine, Cheonan; 2Department of Neurosurgery, Kyunghee University Hospital, Seoul, Korea. We describe herein a malignant glioma arising at the site of the resected hemangioblastoma after irradiation in a patient with von Hippel-Lindau disease (VHL). The patient was a 25 year-old male with multiple heman- gioblastomas at the cerebellum and spinal cord, multiple pancreatic cysts and a renal cell carcinoma; he was diagnosed as having VHL disease. The largest hemangioblastoma at the right cerebellar hemisphere was completely removed, and he received high-dose irradiation postoperatively. The tumor recurred at the same site 7 years later, which was a malignant glioma with no evidence of hemangioblastoma. The malignant glioma showed molecular genetic profiles of radiation-induced tumors because of its diffuse p53 immunostaining and the loss of p16 immunoreactivity. The genetic study to find the loss of heterozygosity (LOH) of VHL gene revealed that only the cerebellar hemangioblastoma showed allelic losses for the gene. To the best of our knowledge, this report is the first to show a malignant glioma that developed in a patient with VHL disease after radiation therapy at the site of an excised hemangioblastoma. This report also suggests that radiation therapy should be performed very carefully in VHL patients with hemangioblastomas.
    [Show full text]
  • Charts Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart
    Charts Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart Glial Tumor Neuronal and Neuronal‐ Ependymomas glial Neoplasms Subependymoma Subependymal Giant (9383/1) Cell Astrocytoma(9384/1) Myyppxopapillar y Desmoplastic Infantile Ependymoma Astrocytoma (9412/1) (9394/1) Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart Glial Tumor Neuronal and Neuronal‐ Ependymomas glial Neoplasms Subependymoma Subependymal Giant (9383/1) Cell Astrocytoma(9384/1) Myyppxopapillar y Desmoplastic Infantile Ependymoma Astrocytoma (9412/1) (9394/1) Use this chart to code histology. The tree is arranged Chart Instructions: Neuroepithelial in descending order. Each branch is a histology group, starting at the top (9503) with the least specific terms and descending into more specific terms. Ependymal Embryonal Pineal Choro id plexus Neuronal and mixed Neuroblastic Glial Oligodendroglial tumors tumors tumors tumors neuronal-glial tumors tumors tumors tumors Pineoblastoma Ependymoma, Choroid plexus Olfactory neuroblastoma Oligodendroglioma NOS (9391) (9362) carcinoma Ganglioglioma, anaplastic (9522) NOS (9450) Oligodendroglioma (9390) (9505 Olfactory neurocytoma Ganglioglioma, malignant (()9521) anaplastic (()9451) Anasplastic ependymoma (9505) Olfactory neuroepithlioma Oligodendroblastoma (9392) (9523) (9460) Papillary ependymoma (9393) Glioma, NOS (9380) Supratentorial primitive Atypical EdEpendymo bltblastoma MdllMedulloep ithliithelioma Medulloblastoma neuroectodermal tumor tetratoid/rhabdoid (9392) (9501) (9470) (PNET) (9473) tumor
    [Show full text]
  • Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
    Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma,
    [Show full text]
  • A Rare Disease in Pediatric Patients
    Cartas ao Editor Jornal de Pediatria - Vol. 85, Nº 3, 2009 277 Resposta do autor Gliomatose leptomeníngea primária difusa: uma doença rara em pacientes pediátricos Prezado Editor, Recebemos com prazer os comentários acima. Os autores esclarecem que, em momento algum, focaram suas preo- Prezado Editor, cupações em critérios para definir síndrome metabólica, até mesmo porque se ela existe1, não existem critérios de consenso O recente relato de caso de Val Filho & Avelar1 sobre um para o diagnóstico em adultos2,3 tampouco em adolescentes. raro tumor cerebral pediátrico é interessante e merece grande Preocupamo-nos sim, em mostrar a presença de fatores de consideração no contexto da literatura publicada sobre esse risco em uma amostra selecionada ao acaso, que eles existem assunto, já que representa um evento muito incomum. Em em proporções tais que podem até ser agrupados, e, por um nome da precisão científica, devemos, portanto, fazer uma dos muitos critérios sugeridos na literatura, com valores de importante correção no que se refere ao diagnóstico. referências pediátricos, dar origem ao que se denomina sín- Os autores fizeram uma revisão breve e adequada sobre a drome metabólica. Não nos propusemos, portanto, a estudar gliomatose cerebral; uma doença rara, classificada pela edição associações entre fatores de risco. de 2007 da Organização Mundial da Saúde (OMS)2 como uma Os autores acreditam que discutir critérios para o que não lesão de grau III com prognóstico reservado. A gliomatose 2,3 existe consenso é desfocar a atenção da gravidade
    [Show full text]
  • 6 Magnetic Resonance Imaging
    Chapter 6 / MRI 105 6 Magnetic Resonance Imaging Paul M. Ruggieri Summary Magnetic resonance (MR) is clearly the accepted imaging standard for the preliminary evalua- tion, peri-operative management, and routine longitudinal follow-up of patients with high-grade glio- mas (HGG). The purpose of this chapter is to review the imaging characteristics of HGG using conventional MR imaging techniques. Whereas the newer techniques of MR diffusion, perfusion, diffusion tensor imaging, and MR spectroscopy will be included as part of this discussion of the high grade neoplasms, the detailed concepts of such studies will be discussed elsewhere in this text. Key Words: MR imaging; anaplastic astrocytoma; glioblastoma multiforme; gliosarcoma; gliomatosis cerebri; oligodendroglioma. INTRODUCTION Magnetic resonance (MR) is clearly the accepted imaging standard for the preliminary evaluation, peri-operative management, and routine longitudinal follow-up of patients with high-grade gliomas (HGG). The purpose of this chapter is to review the imaging characteristics of HGG using conventional MR imaging techniques. Whereas the newer techniques of MR diffusion, perfusion, diffusion tensor imaging, and MR spectroscopy will be included as part of this discussion of the high grade neoplasms, the detailed concepts of such studies will be discussed elsewhere in this text. In general terms, high-grade glial neoplasms are conventionally thought of as infiltrative parenchymal masses that are hyperintense on FLAIR fluid-attenuated inversion recovery (FLAIR) and T2-weighted images, hypointense on unenhanced T1-weighted images, may or may not extend into the corpus callosum, are surrounded by extensive vasogenic edema, and prominently enhance following gadolinium administration. It must be pointed out that this description is clearly just a generalization as many high-grade neoplasms clearly do not follow these “rules” and some of these characteristics may even be seen in low-grade neoplasms.
    [Show full text]
  • Gliomatosis Cerebri with Neurofibromatosis: an Autopsy-Proven Case
    Child's Nerv Syst (1999) 15:219-221 © Springer-Verlag 1999 BRILF Önal Gliomatosis cerebri with neurofibromatosis: Çiçek an autopsy-proven case Gliomatosis cerebri Received: 15 July 1998 Abstract is a stereotactic ante-mortem diagnosis glial neoplastic process that is dif- and the other after autopsy. in this fusely distributed through neural paper. the autopsy-proven case Ç. Önal (BI) 1 • Ç. structures, whose anatomical config- of this rare disease with coexistent Department of Neurosurgery, uration remains Among the neurofibromatosis - the sixth lstanbul School of Medicine, more than 19,000 cases hospitalized case reported in the literature - Universitv of Istanbul, Çapa. Turkey in Istanbul University Istanbul is presented. School of Medicine Department of address: 1 Cad. Özenç Sok .. 4/9. Neurosurgery throughout the past Key words Gliomatosis cerebri · TR-81080 Erenköy-lstanbul. Turkey 45 years, only 2 cases were diag- Neurofibromatosis · Autopsy · Fax: +90-422-34 !O 726 nosed as gliomatosis cerebri. 1 by GFAP tened gyri showing diffuse oedema and no enhancement lntroduction (Fig. 1 Antibiotic and therapy was begun when the initial diagnosis of meningitis was made. No change was noted on Gliomatosis cerebri is a rare tumour of neuroepithelial or- follow-up CT performed 5 days later. MRI studie~ showed diffuse igin with vague presentation [l. 3. 5-8). Even hypo-isointense lesions in T1 and extensive lesions in with the aid T2-weighted and proton density tPDJ images (Figs. 2. 3). The me- of the most sophisticated techniques, ante-mortem diagno- dulla spinalis was in spite of an therapy. her condi- sis is difficult [2, 8).
    [Show full text]
  • Risk-Adapted Therapy for Young Children with Embryonal Brain Tumors, High-Grade Glioma, Choroid Plexus Carcinoma Or Ependymoma (Sjyc07)
    SJCRH SJYC07 CTG# - NCT00602667 Initial version, dated: 7/25/2007, Resubmitted to CPSRMC 9/24/2007 and 10/6/2007 (IRB Approved: 11/09/2007) Activation Date: 11/27/2007 Amendment 1.0 dated January 23, 2008, submitted to CPSRMC: January 23, 2008, IRB Approval: March 10, 2008 Amendment 2.0 dated April 16, 2008, submitted to CPSRMC: April 16, 2008, (IRB Approval: May 13, 2008) Revision 2.1 dated April 29, 2009 (IRB Approved: April 30, 2009 ) Amendment 3.0 dated June 22, 2009, submitted to CPSRMC: June 22, 2009 (IRB Approved: July 14, 2009) Activated: August 11, 2009 Amendment 4.0 dated March 01, 2010 (IRB Approved: April 20, 2010) Activated: May 3, 2010 Amendment 5.0 dated July 19, 2010 (IRB Approved: Sept 17, 2010) Activated: September 24, 2010 Amendment 6.0 dated August 27, 2012 (IRB approved: September 24, 2012) Activated: October 18, 2012 Amendment 7.0 dated February 22, 2013 (IRB approved: March 13, 2013) Activated: April 4, 2013 Amendment 8.0 dated March 20, 2014. Resubmitted to IRB May 20, 2014 (IRB approved: May 22, 2014) Activated: May 30, 2014 Amendment 9.0 dated August 26, 2014. (IRB approved: October 14, 2014) Activated: November 4, 2014 Un-numbered revision dated March 22, 2018. (IRB approved: March 27, 2018) Un-numbered revision dated October 22, 2018 (IRB approved: 10-24-2018) RISK-ADAPTED THERAPY FOR YOUNG CHILDREN WITH EMBRYONAL BRAIN TUMORS, HIGH-GRADE GLIOMA, CHOROID PLEXUS CARCINOMA OR EPENDYMOMA (SJYC07) Principal Investigator Amar Gajjar, M.D. Division of Neuro-Oncology Department of Oncology Section Coordinators David Ellison, M.D., Ph.D.
    [Show full text]
  • The New WHO Classification of Brain Tumors and Molecular Profiling in the Diagnosis of Gliomas
    The New WHO Classification of Brain Tumors and Molecular Profiling in the Diagnosis of Gliomas Aivi Nguyen, MD Neuropathology Fellow Division of Neuropathology Center for Personalized Diagnosis (CPD) Glial neoplasms – infiltrating gliomas Astrocytic tumors • Diffuse astrocytoma II • Anaplastic astrocytoma III • Glioblastoma • Giant cell glioblastoma IV • Gliosarcoma Oligodendroglial tumors • Oligodendroglioma II • Anaplastic oligodendroglioma III Oligoastrocytic tumors • Oligoastrocytoma II • Anaplastic oligoastrocytoma III Courtesy of Dr. Maria Martinez-Lage 2 2016 3 The 2016 WHO classification of tumours of the central nervous system Louis et al., Acta Neuropathologica 2016 4 Talk Outline Genetic, epigenetic and metabolic changes in gliomas • Mechanisms/tumor biology • Incorporation into daily practice and WHO classification Penn’s Center for Personalized Diagnostics • Tests performed • Results and observations to date Summary 5 The 2016 WHO classification of tumours of the central nervous system Louis et al., Acta Neuropathologica 2016 6 Mechanism of concurrent 1p and 19q chromosome loss in oligodendroglioma lost FUBP1 CIC Whole-arm translocation Griffin et al., Journal of Neuropathology and Experimental Neurology 2006 7 Oligodendroglioma: 1p19q co-deletion Since the 1990s Diagnostic Prognostic Predictive Li et al., Int J Clin Exp Pathol 2014 8 Mutations of Selected Genes in Glioma Subtypes GBM Astrocytoma Oligodendroglioma Oligoastrocytoma Killela et al., PNAS 2013 9 Escaping Senescence Telomerase reverse transcriptase gene
    [Show full text]
  • Malignant CNS Solid Tumor Rules
    Malignant CNS and Peripheral Nerves Equivalent Terms and Definitions C470-C479, C700, C701, C709, C710-C719, C720-C725, C728, C729, C751-C753 (Excludes lymphoma and leukemia M9590 – M9992 and Kaposi sarcoma M9140) Introduction Note 1: This section includes the following primary sites: Peripheral nerves C470-C479; cerebral meninges C700; spinal meninges C701; meninges NOS C709; brain C710-C719; spinal cord C720; cauda equina C721; olfactory nerve C722; optic nerve C723; acoustic nerve C724; cranial nerve NOS C725; overlapping lesion of brain and central nervous system C728; nervous system NOS C729; pituitary gland C751; craniopharyngeal duct C752; pineal gland C753. Note 2: Non-malignant intracranial and CNS tumors have a separate set of rules. Note 3: 2007 MPH Rules and 2018 Solid Tumor Rules are used based on date of diagnosis. • Tumors diagnosed 01/01/2007 through 12/31/2017: Use 2007 MPH Rules • Tumors diagnosed 01/01/2018 and later: Use 2018 Solid Tumor Rules • The original tumor diagnosed before 1/1/2018 and a subsequent tumor diagnosed 1/1/2018 or later in the same primary site: Use the 2018 Solid Tumor Rules. Note 4: There must be a histologic, cytologic, radiographic, or clinical diagnosis of a malignant neoplasm /3. Note 5: Tumors from a number of primary sites metastasize to the brain. Do not use these rules for tumors described as metastases; report metastatic tumors using the rules for that primary site. Note 6: Pilocytic astrocytoma/juvenile pilocytic astrocytoma is reportable in North America as a malignant neoplasm 9421/3. • See the Non-malignant CNS Rules when the primary site is optic nerve and the diagnosis is either optic glioma or pilocytic astrocytoma.
    [Show full text]
  • Five Patients with Gliosarcoma R Koul, P Tai, a Dubey Department of Radiation Oncology, Allen Blair Cancer Center, Regina, Canada
    J HK Coll Radiol. 2008;11:116-121 CASE REPORT Five Patients with Gliosarcoma R Koul, P Tai, A Dubey Department of Radiation Oncology, Allen Blair Cancer Center, Regina, Canada ABSTRACT Gliosarcoma is a rare primary malignancy of the central nervous system, classified by the World Health Organization as a high-grade glioma and a variant of glioblastoma multiforme. This report is of 5 patients with gliosarcoma, with emphasis on the pathology and radiology. Key Words: Glioblastoma; Gliosarcoma; Radiotherapy INTRODUCTION The patient underwent right temporal stereotactic crani-ot- Gliosarcoma is a rare primary malignancy of the central omy with subtotal resection and duraplasty with insertion nervous system, classified by the World Health Organi- of a catheter for intracranial pressure (ICP) monitoring. zation (WHO) as a high-grade glioma and a variant of Histology testing of the frozen section showed results glioblastoma multiforme.1 Gliosarcoma accounts for consistent with high-grade glioma. The pathological <2% of all gliomas and 5% of all astrocytomas. The diagnosis was gliosarcoma. The tumour had glial cells tumour has a clinical presentation, natural history, and mixed with cells with a spindle morphology, in a typical radiological profile similar to glioblastoma multiforme. biphasic pattern (Figure 2). Marked vascular prolifera- This report is of 5 patients with gliosarcoma, with tion and patches of necrosis were present. The tumour emphasis on the pathology and radiology. tissue stained strongly positive for glial fibrillary acidic protein (GFAP) and weakly positive for keratin. Stains for CASE REPORTS melanoma and metastatic sarcoma were negative. CT scan Patient 1 A 67-year-old man presented in 2000 with sudden onset of left arm weakness and left facial droop.
    [Show full text]
  • COMMON BRAIN TUMORS Yarema Bezchlibnyk MD, Phd Assistant Professor of Neurosurgery Morsani School of Medicine, University of South Florida 2
    1 COMMON BRAIN TUMORS Yarema Bezchlibnyk MD, PhD Assistant Professor of Neurosurgery Morsani School of Medicine, University of South Florida 2 OVERVIEW • To review the epidemiology, diagnosis, management, and prognosis of common brain tumors, including: • Metastatic tumors • Meningiomas • Glial tumors • High-grade astrocytomas/GBM • Anaplastic gliomas (AA, AO, AOA) • Low-grade gliomas (LGG) 3 EPIDEMIOLOGY OF BRAIN TUMORS • Overall incidence of brain tumors • ~21/100 000 • Metastases are the most common brain tumor seen clinically in adults • ~50% of brain tumors • Meningiomas = ~18% • Gliomas = ~12% • GBM = ~7% • Anaplastic and low-grade gliomas = ~5% • Pituitary adenomas = ~7% • Schwanommas = ~5% • Other = ~8% METASTATIC BRAIN TUMORS EPIDEMIOLOGY OF METASTATIC BRAIN TUMORS • 98,000-170,000 new cases diagnosed each year in U.S. • Peak age 50-70 • 25% of patients with systemic cancer have CNS metastasis on autopsy • 50-80% are multiple TUMOR TYPE AND INCIDENCE/RISK OF BRAIN METS LOCATION OF BRAIN METASTASES Most commonly found at the grey-white matter junction and superficial distal arterial fields The distribution reflects the blood flow to different regions 80% in cerebrum 15% cerebellum 5% brainstem Brem: Neurosurgery, Volume 57(5) Supplement.November 2005.S4-5-S4-9 CLINICAL PRESENTATION • 80% = Metachronous (>2 month after diagnosis of cancer) • 20% = Precocious (1st sign of cancer) or Synchronous (identified at or around the time of the cancer diagnosis) • Neurological symptoms may develop gradually or acutely • Headache, alteration in cognitive function • Other symptoms depending on location: • Focal weakness, ataxia, gait disturbance, cranial nerve findings, hydrocephalus, headache • 20% develop seizures • 15% present with brain bleed IMAGING 10 MANAGEMENT: OVERVIEW • Look for primary cancer • Stage the disease • Precocious • Biopsy or resection for tissue diagnosis • Synchronous or metachronous • Resection vs.
    [Show full text]