Nonindigenous and Cryptogenic Freshwater Bryozoa and Entoprocta in the St. Lawrence River

Total Page:16

File Type:pdf, Size:1020Kb

Nonindigenous and Cryptogenic Freshwater Bryozoa and Entoprocta in the St. Lawrence River Biol Invasions (2016) 18:1737–1744 DOI 10.1007/s10530-016-1116-3 ORIGINAL PAPER Cryptic invaders: nonindigenous and cryptogenic freshwater Bryozoa and Entoprocta in the St. Lawrence River Kayla M. Hamelin . Rowshyra A. Castan˜eda . Anthony Ricciardi Received: 7 September 2015 / Accepted: 10 March 2016 / Published online: 18 March 2016 Ó Springer International Publishing Switzerland 2016 Abstract The distributions of most cosmopolitan power plant at Be´cancoeur, Quebec. Local densities invertebrate species are assumed to result from natural of both U. gracilis and L. carteri increased by an order processes. Cryptic invertebrates with obscure biogeo- of magnitude at sites closer to the power plant. The graphic origins are often considered native by default, occurrence of Lophopus crystallinus statoblasts in St. resulting in potentially severe underestimation of the Lawrence River sediments is the first documented extent of human-assisted invasions. This problem is physical evidence of the species in North America. exemplified by freshwater Bryozoa (Ectoprocta) and Contrary to the presumed natural Holarctic distribu- Entoprocta—small and widely distributed inverte- tion of L. crystallinus, our literature review found that brates commonly found in lakes and rivers. A benthic published historical records of L. crystallinus in the survey of a thermally modified section of the St. United States are erroneous or unsubstantiated. We Lawrence River revealed the presence of two non- propose that L. crystallinus is a western Palearctic indigenous bryozoans: Carter’s moss animal Lopho- species recently introduced to the St. Lawrence River, podella carteri (Hyatt) and the crystal moss animal most likely as statoblasts discharged with ballast water Lophopus crystallinus Pallas. Also discovered was a from transoceanic ships. cryptogenic entoproct, the goblet worm Urnatella gracilis Leidy. These species were collected as Keywords Biogeography Á Bryozoa Á Ectoprocta Á statoblasts and (in the case of U. gracilis) colonial Entoprocta Á Kamptozoa Á Lophopus crystallinus Á fragments downstream of the Gentilly-2 nuclear Lophopodella carteri Á Urnatella gracilis Electronic supplementary material The online version of Introduction this article (doi:10.1007/s10530-016-1116-3) contains supple- mentary material, which is available to authorized users. Nonindigenous species—organisms that have spread K. M. Hamelin Á R. A. Castan˜eda Á A. Ricciardi (&) beyond their historical range directly or indirectly as a Redpath Museum, McGill University, 859 Sherbrooke result of human activities—are being discovered at Street West, Montreal, QC H3A 0C4, Canada e-mail: [email protected] increasing rates in inland waters worldwide. In most large lakes and rivers, dozens of nonindigenous Present Address: invertebrate taxa have been recorded (Ricciardi R. A. Castan˜eda 2015). These numbers must certainly fall short of Department of Ecology and Evolutionary Biology, University of Toronto- Scarborough, 1265 Military Trail, Toronto, reality, as a result of insufficient monitoring, inade- ON M1C 1A4, Canada quate taxonomic expertise, and incomplete knowledge 123 1738 K. M. Hamelin et al. of the historical biogeography of many species nearly one million statoblasts, which could potentially (Carlton 2009). Indeed, numerous freshwater inverte- be re-suspended and released during ballasting oper- brate taxa are cryptogenic (that is, their native or ations of ships that visit multiple ports within the nonindigenous origins cannot be confirmed) and basin. A few statoblasts from these ships were hatched perhaps many more are misidentified as natives successfully in informal laboratory trials (S.A. Bailey, (‘‘pseudoindigenous’’, sensu Carlton 2009). Conse- Fisheries and Oceans Canada, personal communica- quently, the true extent and impacts of freshwater tion). Given the potentially high propagule pressure invasions may have been profoundly underestimated. imposed by ballast water release, among myriad other Small-bodied taxa—such as bryozoans (Ecto- human vectors, it is rather incredible that only one procta), entoprocts, annelids and rotifers, among nonindigenous bryozoan species has been recorded in others that are ubiquitous in lakes and rivers—are the Great Lakes-St. Lawrence River system to date remarkably absent from most freshwater nonindige- (Ricciardi and Reiswig 1994; Ricciardi 2006). nous species lists (e.g. Mills et al. 1993; Karatayev Here, we report the abundance and distribution of et al. 2009). Two reasons for this are: (1) their nonindigenous freshwater bryozoan and entoproct taxonomic resolution is problematic and thus impedes species in a 4-km thermally modified section of the recognition of nonindigenous taxa; and (2) they are St. Lawrence River downstream of a nuclear power believed to be easily transported by processes such as plant. wind and water currents, or carried by migrating waterfowl (e.g. Figuerola et al. 2004), such that they are often assumed to have naturally cosmopolitan Methods and site description distributions (Carlton 2009). Nevertheless, some freshwater bryozoans have well-documented invasion Invertebrate samples were collected within a broader histories (Balounova´ et al. 2013; Ricciardi and survey assessing the structure of benthic communi- Reiswig 1994; Wood and Okamura 1998), and several ties downstream of the Gentilly-2 nuclear power other species have disjunct, expanding distributions plant (G2NPP) on the south shore of the St. that suggest recent introductions (Wood 2002; Tatic- Lawrence River (46°2303800N, 7282101200W) near chi et al. 2008). Be´cancour, Que´bec (Fig. 1). The G2NPP facility One would expect bryozoan species introductions began operation in 1983 and remained functional to be far more common than records indicate, given until it was decommissioned at the end of December that phylactolaemate bryozoans possess highly resis- 2012. For decades, the heated discharge from tant and abundant resting eggs (statoblasts) that can G2NPP was released at temperatures *11 °C higher individually generate a population (Wood 2010). than the ambient river temperature, which prevented Statoblasts are moved through human activities a multi-kilometer section of the river from freezing including inadvertent transport with stocked fish and during winter months (Langlois and Vaillancourt aquatic plants (e.g. Masters 1940) and ship ballast 1990; Castan˜eda and Hamelin unpublished data). tanks (Bailey et al. 2005; Kipp et al. 2010). Contrary to Using a petite Ponar grab (231 cm2 area), we the classical view that the cosmopolitanism of bry- sampled the benthos along a 3.2 km transect down- ozoans is the result of natural processes (Bushnell stream of G2NPP (Fig. 1). This distance encompassed 1973), there is evidence that human-mediated disper- the artificial discharge canal (mean depth 2–3 m) and sal has played a major role in shaping their contem- most of the thermal plume, defined by year-round open porary global distributions. For example, transoceanic water of variable depth ([3 m) driven by both shipping traffic is the most plausible vector for the seasonal and tidal influences (Table 1). We collected introduction of an Asian bryozoan into the Panama samples along the length of the transect perpendicular Canal region (Wood and Okamura 1998). Statoblasts to the isotherms of the thermal gradient. Two benthic of eleven bryozoan species, comprising more than grabs were taken at each of 10 stations in June and 10 % of all described taxa (!), were found in the ballast August 2011, and 30 stations in May and September tank sediments of 33 transoceanic ships visiting the 2012. Samples were sieved through 0.5 mm mesh and Great Lakes over a two-year period (Kipp et al. 2010); all invertebrates and coarse sediments retained in the each of these ships was estimated to carry, on average, sieve were fixed in 75 % ethanol. 123 Nonindigenous and cryptogenic freshwater Bryozoa and Entoprocta 1739 Quebec *G2NPP * Montreal St. Lawrence River United States Lake Ontario Fig. 1 Map of the study site and location of the Gentilly-2 nuclear power plant (G2NPP) on the St. Lawrence River Table 1 Physico-chemical variables in the Gentilly-2 discharge canal (‘‘Canal’’) and downstream of the discharge canal (‘‘Rest of Plume’’), recorded in situ along the sampling transect in August 2011 and May 2012 Variable Canal Rest of Plume May August May August Depth (m) 2.2 ± 0.9 2.6 ± 0.4 4.8 ± 1.1 3.1 ± 1.4 Temperature (°C) 24.3 ± 0.6 30.2 ± 4.8 16.2 ± 2.2 24.8 ± 0.6 Dissolved oxygen (mg/L) 10.7 ± 0.43 7.7 ± 1.0 10.6 ± 0.4 8.4 ± 0.4 Flow velocity (m/s) 0.07 ± 0.04 0.23 ± 0.16 0.07 ± 0.07 0.11 ± 0.14 Sediment grain size (Phi) 2.28 ± 3.22 -0.89 ± 1.75 2.28 ± 2.31 1.27 ± 2.44 Values reported as Mean ± SD At each station, we measured temperature and Ricciardi (2005). During our sampling period, tem- dissolved oxygen (mg/L) using a YSI probe, water peratures were elevated in the canal (mean 24.3 °Cin velocity using a digital flow meter (Swoffer Model May 2012, mean 30.2 °C in August 2011), and 3000), and depth using either a digital depth sounder represented an average temperature enhancement of or weighted measuring tape. The mean grain size (Phi 6–8 °C relative to downstream sites. Large sediments scale) of sediments was estimated following Jones and (gravel) were observed close to the power plant 123 1740 K. M. Hamelin et al. outflow, with smaller sediments and organic debris worm Urnatella gracilis Leidy (Fig. 2). Bryozoan found throughout the canal, and mixed sediments statoblasts were encountered in greater density near downstream. the G2NPP discharge source (Fig. 3). Their abun- Using a dissection microscope, we manually dance in the discharge canal was largely dominated by removed statoblasts and colony fragments from sed- L. carteri, an Asian species that has an invasion history iments, and identified species following Wood (2010). in North America and Europe (e.g., Sanzhak et al. The analysis of sediment samples is considered to be a 2012; Walker et al. 2013) and is the only nonindige- reliable method of gaining information on the distri- nous bryozoan previously recorded in the Great Lakes- butions of bryozoan species that release statoblasts, St.
Recommended publications
  • Plant Macrofossil Evidence for an Early Onset of the Holocene Summer Thermal Maximum in Northernmost Europe
    ARTICLE Received 19 Aug 2014 | Accepted 27 Feb 2015 | Published 10 Apr 2015 DOI: 10.1038/ncomms7809 OPEN Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe M. Va¨liranta1, J.S. Salonen2, M. Heikkila¨1, L. Amon3, K. Helmens4, A. Klimaschewski5, P. Kuhry4, S. Kultti2, A. Poska3,6, S. Shala4, S. Veski3 & H.H. Birks7 Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca.2°C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. 1 Department of Environmental Sciences, ECRU, University of Helsinki, P.O. Box 65, Helsinki FI-00014, Finland. 2 Department of Geosciences and Geography, University of Helsinki, P.O. Box 65, Helsinki FI-00014, Finland.
    [Show full text]
  • Natural Communities of Michigan: Classification and Description
    Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council.
    [Show full text]
  • Comparative Genomic Analysis of Cristatella Mucedo Provides Insights Into Bryozoan Evolution and Nervous System Function
    bioRxiv preprint doi: https://doi.org/10.1101/869792; this version posted December 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Comparative genomic analysis of Cristatella mucedo provides insights into Bryozoan evolution and nervous system function Viktor V Starunov1,2†, Alexander V Predeus3†*, Yury A Barbitoff3, Vladimir A Kutiumov1, Arina L Maltseva1, Ekatherina A Vodiasova4, Andrea B Kohn5, Leonid L Moroz5*, Andrew N Ostrovsky1,6* 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia 2 Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St. Petersburg, Russia 3 Bioinformatics Institute, Kantemirovskaya 2A, 197342, St. Petersburg, Russia 4 A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Leninsky pr. 38/3, 119991, Moscow, Russia 5 The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA 6 Department of Paleontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria † These authors contributed equally to the study. * To whom correspondence should be addressed: [email protected], [email protected], [email protected] bioRxiv preprint doi: https://doi.org/10.1101/869792; this version posted December 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Comparative Genomic Analysis of Cristatella Mucedo Provides Insights Into Bryozoan
    bioRxiv preprint doi: https://doi.org/10.1101/869792; this version posted December 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Comparative genomic analysis of Cristatella mucedo provides insights into Bryozoan evolution and nervous system function Viktor V Starunov1,2†, Alexander V Predeus3†*, Yury A Barbitoff3, Vladimir A Kutyumov1, Arina L Maltseva1, Ekatherina A Vodiasova4 Andrea B Kohn5, Leonid L Moroz4,5*, Andrew N Ostrovsky1,6* 1 Department of invertebrate zoology, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia 2 Zoological Institute RAS, Universitetskaya nab. 1, 199034, St. Petersburg, Russia 3 Bioinformatics Institute, Kantemirovskaya 2A, 197342, St. Petersburg, Russia 4 A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, Leninsky pr. 38/3, 119991, Moscow, Russia 5 The Whitney Laboratory for Marine Bioscience, University of Florida 6 University of Vienna † These authors contributed equally to the study. * To whom correspondence should be addressed: [email protected], [email protected], [email protected] bioRxiv preprint doi: https://doi.org/10.1101/869792; this version posted December 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract The modular body organization is an enigmatic feature of different animal phyla scattered throughout the phylogenetic tree.
    [Show full text]
  • Recolonization of Freshwater Ecosystems Inferred from Phylogenetic Relationships Nikola KoletiC1, Maja Novosel2, Nives RajeviC2 & Damjan FranjeviC2
    Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships Nikola Koletic1, Maja Novosel2, Nives Rajevic2 & Damjan Franjevic2 1Institute for Research and Development of Sustainable Ecosystems, Jagodno 100a, 10410 Velika Gorica, Croatia 2Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia Keywords Abstract COI, Gymnolaemata, ITS2, Phylactolaemata, rRNA genes. Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies Correspondence can reach the size of several tens of centimeters, while individual units within a Damjan Franjevic, Department of Biology, colony are the size of a few millimeters. Each individual within a colony works Faculty of Science, University of Zagreb, as a separate zooid and is genetically identical to each other individual within Rooseveltov trg 6, 10000 Zagreb, Croatia. the same colony. Most freshwater species of bryozoans belong to the Phylacto- Tel: +385 1 48 77 757; Fax: +385 1 48 26 260; laemata class, while several species that tolerate brackish water belong to the E-mail: [email protected] Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part Funding Information of Croatia (Europe). Freshwater and brackish taxons of bryozoans were geneti- This research was supported by Adris cally analyzed for the purpose of creating phylogenetic relationships between foundation project: “The genetic freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata clas- identification of Croatian autochthonous ses and determining the role of brackish species in colonizing freshwater and species”.
    [Show full text]
  • Note to Users
    Odors And Ornaments In Crested Auklets (Aethia Cristatella): Signals Of Mate Quality? Item Type Thesis Authors Douglas, Hector D., Iii Download date 24/09/2021 03:31:59 Link to Item http://hdl.handle.net/11122/8905 NOTE TO USERS Page(s) missing in number only; text follows. Page(s) were scanned as received. 61 , 62 , 201 This reproduction is the best copy available. ® UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ODORS AND ORNAMENTS IN CRESTED AUKLETS (AETHIA CRISTATELLA): SIGNALS OF MATE QUALITY ? A DISSERTATION Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Hector D. Douglas III, B.A., B.S., M.S., M.F.A. Fairbanks, Alaska August 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3240323 Copyright 2007 by Douglas, Hector D., Ill All rights reserved. INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3240323 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved.
    [Show full text]
  • The Relative Importance of Eutrophication and Connectivity in Structuring Biological Communities of the Upper Lough Erne System, Northern Ireland
    THE RELATIVE IMPORTANCE OF EUTROPHICATION AND CONNECTIVITY IN STRUCTURING BIOLOGICAL COMMUNITIES OF THE UPPER LOUGH ERNE SYSTEM, NORTHERN IRELAND Thesis submitted for the degree of Doctor of Philosophy University College London by JORGE SALGADO Department of Geography University College London and Department of Zoology Natural History Museum December 2011 1 2 Abstract This study investigates the relative importance of eutrophication and connectivity (dispersal) in structuring macrophyte and invertebrate lake assemblages across spatial and temporal scales in the Upper Lough Erne (ULE) system, Northern Ireland. Riverine systems and their associated flood-plains and lakes comprise dynamic diverse landscapes in which water flow plays a key role in affecting connectivity. However, as for many other freshwater systems, their ecological integrity is threatened by eutrophication and hydrological alteration. Eutrophication results in a shift from primarily benthic to primarily pelagic primary production and reductions in species diversity, while flow regulation often reduces water level fluctuation and hydrological connectivity in linked riverine systems. Low water levels promote isolation between areas and increases the importance of local driving forces (e.g. eutrophication). Conversely, enhanced water flow and flooding events promote connectivity in systems thus potentially increasing local diversity and homogenising habitats through the exchange of species. Therefore, connectivity may help to override the local effects of eutrophication. Attempts at testing the above ideas are rare and typically involve the examination of current community patterns using space for time substitution. However, biological community responses to eutrophication and changes in hydrological connectivity may involve lags, historical contingency, and may be manifested over intergenerational timescales (10s -100s of years), rendering modern studies less than satisfactory for building an understanding of processes that drive community structure and effect change.
    [Show full text]
  • Population Ecology and Structural Dynamics of Walleye Pollock (Theragra Chalcogramma)
    Dynamics of the Bering Sea • 1999 581 CHAPTER 26 Population Ecology and Structural Dynamics of Walleye Pollock (Theragra chalcogramma) Kevin M. Bailey Alaska Fisheries Science Center, Seattle, Washington Dennis M. Powers, Joseph M. Quattro, and Gary Villa Hopkins Marine Station, Stanford University, Pacific Grove, California Akira Nishimura National Institute of Far Seas Fisheries, Orido, Shimizu, Japan James J. Traynor and Gary Walters Alaska Fisheries Science Center, Seattle, Washington Abstract In this paper, walleye pollock (Theragra chalcogramma) is characterized as a generalist species, occupying a broad niche and inhabiting a wide geographic range. Pollock’s local abundance is usually high, dominating the fish biomass in many regional ecosystems. Thus, it appears to be an adaptable species capable of colonizing marginal habitats. The fields of macroecology, metapopulation dynamics, and genetic population struc- ture are briefly reviewed and information on pollock is summarized with- in the framework of these concepts. Pollock show a pattern of apparent stock structure that has not always been indicated by genetic differences. Phenotypic differences between stocks, elemental composition of otoliths, and parasite studies indicate restricted mixing of adults. There are genet- ic differences between broad regions, but differences between adjacent stocks, especially within the eastern Bering Sea, are currently unresolved. The potential for gene flow mediated by larval drift is high between adja- cent stocks. A generalized population structure for walleye pollock is pro- posed. The macro-population of walleye pollock is made of several major populations (such as the eastern Bering Sea and Sea of Okhotsk populations) Current address for Joseph M. Quattro is Department of Biological Science, University of South Carolina, Columbia, SC 29208.
    [Show full text]
  • The Nervous System of the Lophophore in the Ctenostome Amathia Gracilis
    Temereva and Kosevich BMC Evolutionary Biology (2016) 16:181 DOI 10.1186/s12862-016-0744-7 RESEARCH ARTICLE Open Access The nervous system of the lophophore in the ctenostome Amathia gracilis provides insight into the morphology of ancestral ectoprocts and the monophyly of the lophophorates Elena N. Temereva* and Igor A. Kosevich Abstract Background: The Bryozoa (=Ectoprocta) is a large group of bilaterians that exhibit great variability in the innervation of tentacles and in the organization of the cerebral ganglion. Investigations of bryozoans from different groups may contribute to the reconstruction of the bryozoan nervous system bauplan. A detailed investigation of the polypide nervous system of the ctenostome bryozoan Amathia gracilis is reported here. Results: The cerebral ganglion displays prominent zonality and has at least three zones: proximal, central, and distal. The proximal zone is the most developed and contains two large perikarya giving rise to the tentacle sheath nerves. The neuroepithelial organization of the cerebral ganglion is revealed. The tiny lumen of the cerebral ganglion is represented by narrow spaces between the apical projections of the perikarya of the central zone. The cerebral ganglion gives rise to five groups of main neurite bundles of the lophophore and the tentacle sheath: the circum-oral nerve ring, the lophophoral dorso-lateral nerves, the pharyngeal and visceral neurite bundles, the outer nerve ring, and the tentacle sheath nerves. Serotonin-like immunoreactive nerve system of polypide includes eight large perikarya located between tentacles bases. There are two analmost and six oralmost perikarya with prominent serotonergic “gap” between them. Based on the characteristics of their innervations, the tentacles can be subdivided into two groups: four that are near the anus and six that are near the mouth.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Early Development of the Myxozoan
    FOLIA PARASITOLOGICA 55: 241–255, 2008 Early development of the myxozoan Buddenbrockia plumatellae in the bryozoans Hyalinella punctata and Plumatella fungosa, with comments on taxonomy and systematics of the Myxozoa Elizabeth U. Canning1, Alan Curry2 and Beth Okamura3 1 Department of Biological Sciences, Faculty of Life Sciences, Imperial College London, SW7 2AZ, UK; 2 Health Protection Agency, Electron Microscopy, Clinical Sciences Building, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK; 3 Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK Key words: Buddenbrockia, myxoworm, sacculogenesis, muscle primordia, sporogonic cells, cnidarian-like features, Phylactolaemata Abstract. We undertook a detailed ultrastructural investigation to gain insight into the early stages of development of the vermi- form myxozoan, Buddenbrockia plumatellae Schröder, 1910 in two bryozoan hosts. Early cell complexes arise in the peritoneum after division and migration of isolated cells in the host body wall. The development of cell junctions linking the outer (mural) cells of the complex then produces a sac enclosing a mass of inner cells. Elongation to the vermiform stage (myxoworm) occurs during multiplication and reorganisation of the inner cells as a central core within the single-layered sac wall. The core cells de- velop into muscle and sporogonic cells separated from the mural cells by a basal lamina. Myogenesis occurs along the length of the myxoworm from cells that differentiate from the central core, and is independent of elongation. Four primary sporogonic cells maintain positions close to the basal lamina, between muscle cells, while giving rise to secondary sporogonic cells that eventually become free in the central cavity.
    [Show full text]