Big Data for Improved Health Outcomes — Second Edition — Arjun Panesar Machine Learning and AI for Healthcare Big Data for Improved Health Outcomes Second Edition
Total Page:16
File Type:pdf, Size:1020Kb
Machine Learning and AI for Healthcare Big Data for Improved Health Outcomes — Second Edition — Arjun Panesar Machine Learning and AI for Healthcare Big Data for Improved Health Outcomes Second Edition Arjun Panesar Machine Learning and AI for Healthcare Arjun Panesar Coventry, UK ISBN-13 (pbk): 978-1-4842-6536-9 ISBN-13 (electronic): 978-1-4842-6537-6 https://doi.org/10.1007/978-1-4842-6537-6 Copyright © 2021 by Arjun Panesar This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Managing Director, Apress Media LLC: Welmoed Spahr Acquisitions Editor: Celestin Suresh John Development Editor: Laura Berendson Coordinating Editor: Divya Modi Cover designed by eStudioCalamar Cover image designed by Freepik (www.freepik.com) Images by Krystal Sidwell and Giverny Ison Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail [email protected], or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. For information on translations, please e-mail [email protected]; for reprint, paperback, or audio rights, please e-mail [email protected]. Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales. Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6536-9. For more detailed information, please visit http://www.apress.com/source-code. Printed on acid-free paper Dedicated to the infinite majesty of Kirpa, Ananta, and Charlotte. Table of Contents About the Author ....................................................................................................xxi About the Technical Reviewer ..............................................................................xxiii Acknowledgments .................................................................................................xxv Introduction .........................................................................................................xxvii Chapter 1: What Is Artificial Intelligence? ................................................................ 1 A Multifaceted Discipline .............................................................................................................. 1 Examining Artificial Intelligence .................................................................................................... 4 Reactive Machines .................................................................................................................. 5 Limited Memory: Systems That Think and Act Rationally ........................................................ 5 Theory of Mind: Systems That Think Like Humans .................................................................. 5 Self-Aware AI: Systems That Are Humans ............................................................................... 6 Weak AI .................................................................................................................................... 7 Strong AI .................................................................................................................................. 7 What Is Machine Learning? .......................................................................................................... 7 What Is Data Science? .................................................................................................................. 8 Learning from Real-Time Big Data ................................................................................................ 9 Applications of AI in Healthcare .................................................................................................. 10 Prediction .............................................................................................................................. 12 Diagnosis ............................................................................................................................... 12 Personalized Treatment and Behavior Modification .............................................................. 12 Drug Discovery ...................................................................................................................... 13 Follow-Up Care ...................................................................................................................... 13 v TABLE OF CONtENtS Realizing the Potential of AI in Healthcare .................................................................................. 13 Understanding Gap ................................................................................................................ 13 Fragmented Data ................................................................................................................... 14 Appropriate Security .............................................................................................................. 14 Data Governance ................................................................................................................... 15 Bias ........................................................................................................................................ 15 Software ...................................................................................................................................... 16 Conclusion .................................................................................................................................. 16 Chapter 2: Data ....................................................................................................... 19 What Is Data? .............................................................................................................................. 19 Types of Data .............................................................................................................................. 21 Big Data ...................................................................................................................................... 23 Volume ................................................................................................................................... 25 Variety ................................................................................................................................... 27 Velocity .................................................................................................................................. 30 Value ...................................................................................................................................... 32 Veracity .................................................................................................................................. 33 Validity ................................................................................................................................... 35 Variability ............................................................................................................................... 36 Visualization .......................................................................................................................... 36 Massive Data .............................................................................................................................. 36 Small Data ................................................................................................................................... 37 Metadata ..................................................................................................................................... 37 Healthcare Data: Little and Big Use Cases .................................................................................. 38 Predicting Waiting Times ......................................................................................................