Lecture Notes the Algebraic Theory of Information

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes the Algebraic Theory of Information Lecture Notes The Algebraic Theory of Information Prof. Dr. J¨urgKohlas Institute for Informatics IIUF University of Fribourg Rue P.-A. Faucigny 2 CH { 1700 Fribourg (Switzerland) E-mail: [email protected] http://diuf.unifr.ch/tcs Version: November 24, 2010 2 Copyright c 1998 by J. Kohlas Bezugsquelle: B. Anrig, IIUF Preface In today's scientific language information theory is confined to Shannon's mathematical theory of communication, where the information to be trans- mitted is a sequence of symbols from a finite alphabet. An impressive mathe- matical theory has been developed around this problem, based on Shannon's seminal work. Whereas it has often been remarked that this theory , albeit its importance, cannot seize all the aspect of the concept of \information", little progress has been made so far in enlarging Shannon's theory. In this study, it is attempted to develop a new mathematical theory cov- ering or deepening other aspects of information than Shannon's theory. The theory is centered around basic operations with information like aggregation of information and extracting of information. Further the theory takes into account that information is an answer, possibly a partial answer, to ques- tions. This gives the theory its algebraic flavor, and justifies to speak of an algebraic theory of information. The mathematical theory presented her is rooted in two important de- velopments of recent years, although these developments were not originally seen as part of a theory of information. The first development is local compu- tation, a topic starting with the quest for efficient computation methods in probabilistic networks. It has been shown around 1990 that these computa- tion methods are closely related to some algebraic structure, for which many models or instances exist. This provides the abstract base for generic infer- ence methods covering a wide spectrum of topics like databases, different systems of logic, probability networks and many other formalisms of uncer- tainty. This algebraic structure, completed by the important idempotency axiom, is the the base of the mathematical theory developed here. Whereas the original structure has found some interest for computation purposes, it becomes its flavor as a theory of information only with the additional idem- potency axiom. This leads to information algebras, the object of the present study. Surprisingly, the second development converging to the present work is Dempster-Shafer Theory of Evidence. It was proposed originally as an ex- tension of probability theory for inference under uncertainty, an important topic in Artificial Intelligence and related fields. In everyday language one often speaks of uncertain information. In our framework this concept is 3 4 rigorously seized by random variables with values in information algebras. This captures the idea that a source emits information, which may be in- terpreted in different ways, which depending on various assumptions may result in different information elements. It turns out that this results in a natural generalization or extension of Dempster-Shafer Theory of Evidence, linking thus this theory in a very basic way to our theory of information. In this way the algebraic of theory of information is thought of as a mathematical theory forming the rigorous common background of many the- ories and formalisms studied and developed in Computer Science. Whereas each individual formalism has its own particularities, the algebraic theory of information helps to understand the common structure of information processing. Contents 1 Introduction 9 I Information Algebras 13 2 Modeling Questions 15 2.1 Refining and Coarsening: the Order Structure . 15 2.2 Concrete Question Structures . 16 3 Axiomatics of Information Algebra 21 3.1 Projection Axiomatics . 21 3.2 Multivariate Information Algebras . 26 3.3 File Systems . 31 3.4 Variable Elimination . 33 3.5 The Transport Operation . 41 3.6 Domain-Free Algebra . 46 4 Order of Information 61 4.1 Partial Order of Information . 61 4.2 Ideal Completion of Information Algebras . 65 4.3 Atomic Algebras and Relational Systems . 71 4.4 Finite Elements and Approximation . 77 4.5 Compact Ideal Completion . 83 4.6 Labeled Compact Information Algebra . 85 4.7 Continuous Algebras . 91 5 Mappings 99 5.1 Order-Preserving Mappings . 99 5.2 Continuous Mappings . 101 5.3 Continuous Mappings Between Compact Algebras . 106 6 Boolean Information Algebra 111 6.1 Domain-Free Boolean Information Algebra . 111 6.2 Labeled Boolean Information Algebra . 118 5 6 CONTENTS 6.3 Representation by Set Algebras . 125 7 Independence of Information 129 7.1 Conditional Independence of Domains . 129 7.2 Factorization of Information . 137 7.3 Atomic Algebras and Normal Forms . 141 8 Measure of Information 143 8.1 Information Measure . 143 8.2 Dual Information in Boolean Information Algebras . 143 9 Topology of information Algebras 145 9.1 Observable Properties and Topology . 145 9.2 Alexandrov Topology of Information Algebras . 146 9.3 Scott Topology of Compact Information Algebras . 146 9.4 Topology of Labeled Algebras . 146 9.5 Representation Theory of Information Algebras . 146 10 Algebras of Subalgebras 147 10.1 Subalgebras of Domain-free Algebras . 147 10.2 Subalgebras of Labeled Algebras . 147 10.3 Compact Algebra of Subalgebras . 147 10.4 Subalgebras of Compact Algebras . 147 II Local Computation 149 11 Local Computation on Markov Trees 151 11.1 Problem and Complexity Considerations . 151 11.2 Markov Trees . 153 11.3 Local Computation . 158 11.4 Updating and Retracting . 162 12 Multivariate Systems 165 12.1 Local Computation on Covering Join Trees . 165 12.2 Fusion Algorithm . 165 12.3 Updating . 165 13 Boolean Information Algebra 167 14 Finite Information and Approximation 169 15 Effective Algebras 171 16 173 CONTENTS 7 17 175 III Information and Language 177 18 Introduction 179 19 Contexts 181 19.1 Sentences and Models . 181 19.2 Lattice of Contexts . 181 19.3 Information Algebra of Contexts . 181 20 Propositional Information 183 21 Expressing Information in Predicate Logic 185 22 Linear Systems 187 23 Generating Atoms 189 24 191 IV Uncertain Information 193 25 Functional Models and Hints 195 25.1 Inference with Functional Models . 195 25.2 Assumption-Based Inference . 197 25.3 Hints . 199 25.4 Combination and Focussing of Hints . 202 25.5 Algebra of Hints . 205 26 Simple Random Variables 209 26.1 Domain-Free Variables . 209 26.2 Labeled Random Variables . 211 26.3 Degrees of Support and Plausibility . 212 26.4 Basic Probability Assignments . 214 27 Random Information 217 27.1 Random Mappings . 217 27.2 Support and Possibility . 219 27.3 Random Variables . 224 27.4 Random Variables in σ-Algebras . 229 8 CONTENTS 28 Allocation of Probability 235 28.1 Algebra of Allocation of Probabilities . 235 28.2 Random Variables and Allocations of Probability . 242 28.3 Labeled Allocations of Probability . 247 29 Support Functions 253 29.1 Characterization . 253 29.2 Generating Support Functions . 257 29.3 Extension of Support Functions . 262 30 Random Sets 277 30.1 Set-Valued Mappings: Finite Case . 277 30.2 Set-Valued Mappings: General Case . 281 30.3 Random Mappings into Set Algebras . 283 31 Systems of Independent Sources 287 32 Probabilistic Argumentation Systems 289 32.1 Propositional Argumentation . 289 32.2 Predicate Logic and Uncertainty . 289 32.3 Stochastic Linear Systems . 289 33 Random Mappings as Information 291 33.1 Information Order . 291 33.2 Information Measure . 291 33.3 Gaussian Information . 291 References 293 Chapter 1 Introduction Information is a central concept of science, especially of Computer Science. The well developed fields of statistical and algorithmic information theory focus on measuring information content of messages, statistical data or com- putational objects. There are however many more facets to information. We mention only three: 1. Information should always be considered relative to a given specific question. And if necessary, information must be focused onto this question. The part of information relevant to the question must be extracted. 2. Information may arise from different sources. There is therefore the need for aggregation or combination of different pieces of information. This is to ensure that the whole information available is taken into account. 3. Information can be uncertain, because its source is unreliable or be- cause it may be distorted. Therefore it must be considered as defeasible and it must be weighed according to its reliability. The first two aspects induce a natural algebraic structure of information. The two basic operations of this algebra are combination or aggregation of information and focusing or extraction of information. Especially the oper- ation of focusing relates information to a structure of interdependent ques- tions. These notes are devoted to a discussion of this algebraic structure and its variants. It will demonstrate that many well known, but very different formalisms such as for example relational algebra and probabilistic networks, as well as many others, fit into this abstract framework. The algebra allows for a generic study of the structure of information. Furthermore it permits to construct generic architectures for inference. The third item above, points to a very central property of real-life infor- mation, namely uncertainty. Clearly, probability is the appropriate tool to 9 10 CHAPTER 1. INTRODUCTION describe and study uncertainty. Information however is not only numerical. Therefore, the usual concept of random variables is not sufficient to study uncertain information. It turns out that the algebra of information is the natural framework to model uncertain information. This will be another important subject of these notes. In gthe first part of these notes, the basic algebraic structure of in- formation will be siscussed. Questions are formally represented by their possible answers. However the answers may be given by varying granular- ity. This introduces a partial order between questions which reflects refining and coarsening of questions. If two different questions are considered si- multaneously, then this means that the coarsest set of answers which allows to obtain answers to both questions should be considered.
Recommended publications
  • Specification of Agent Explicit Knowledge in Cryptographic
    International Journal of Electrical and Computer Engineering 4:2 2009 Specification of Agent Explicit Knowledge in Cryptographic Protocols Khair Eddin Sabri, Ridha Khedri, and Jason Jaskolka Department of Computing and Software Faculty of Engineering McMaster University {sabrike, khedri, jaskolj}@mcmaster.ca Abstract— Cryptographic protocols are widely used in various The procedural knowledge involves a set of mecha- applications to provide secure communications. They are usually nisms/functions that enables an agent to obtain new informa- represented as communicating agents that send and receive messages. tion from its explicit knowledge. For example, if the explicit These agents use their knowledge to exchange information and communicate with other agents involved in the protocol. An agent knowledge of an agent contains an encrypted message as well knowledge can be partitioned into explicit knowledge and procedural as the key and the cipher used to decrypt the message, then by knowledge. The explicit knowledge refers to the set of information using the procedural knowledge, the secret can be obtained. which is either proper to the agent or directly obtained from other In this paper, we focus only on the explicit knowledge. agents through communication. The procedural knowledge relates to Both parts of the agent knowledge are necessary in ana- the set of mechanisms used to get new information from what is already available to the agent. lyzing cryptographic protocols. When we analyze the liter- In this paper, we propose a mathematical framework which spec- ature using this classification of agent knowledge, we find ifies the explicit knowledge of an agent involved in a cryptographic several representations of that knowledge.
    [Show full text]
  • Non-Locality, Contextuality and Valuation Algebras: a General Theory of Disagreement Samson Abramsky1, Giovanni Carù1
    Non-locality, contextuality and valuation algebras: a general theory of disagreement Samson Abramsky1, Giovanni Carù1 1Department of Computer Science, University of Subject Areas: Oxford, Wolfson Building, Parks Road, Oxford OX1 Quantum information, quantum 3QD, U.K. foundations, generic inference Keywords: We establish a strong link between two apparently Contextuality, generic inference, unrelated topics: the study of conflicting information valuation algebras, algorithms in the formal framework of valuation algebras, and the phenomena of non-locality and contextuality. In particular, we show that these peculiar features of Email addresses: quantum theory are mathematically equivalent to a Samson Abramsky general notion of disagreement between information [email protected] sources. This result vastly generalises previously observed connections between contextuality, relational databases, constraint satisfaction problems, and logical paradoxes, and gives further proof that contextual behaviour is not a phenomenon limited to quantum physics, but pervades various domains of mathematics and computer science. The connection allows to translate theorems, methods and algorithms from one field to the other, and paves the way for the application of generic inference algorithms to study contextuality. 1. Introduction Non-locality and contextuality are characteristic features of quantum theory which have been recently proven to play a crucial role as fundamental resources for quantum information and computation [1,2]. In 2011, Abramsky and Brandenburger introduced an abstract mathematical framework based on sheaf theory to describe these phenomena in a unified treatment, thereby providing a common general theory for the study of non-locality and contextuality, which had been carried out in a rather arXiv:1911.03521v1 [quant-ph] 8 Nov 2019 concrete, example-driven fashion until then [3].
    [Show full text]
  • On Homomorphism of Valuation Algebras∗
    Communications in Mathematical Research 27(1)(2011), 181–192 On Homomorphism of Valuation Algebras∗ Guan Xue-chong1,2 and Li Yong-ming3 (1. College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062) (2. School of Mathematical Science, Xuzhou Normal University, Xuzhou, Jiangsu, 221116) (3. College of Computer Science, Shaanxi Normal University, Xi’an, 710062) Communicated by Du Xian-kun Abstract: In this paper, firstly, a necessary condition and a sufficient condition for an isomorphism between two semiring-induced valuation algebras to exist are presented respectively. Then a general valuation homomorphism based on different domains is defined, and the corresponding homomorphism theorem of valuation algebra is proved. Key words: homomorphism, valuation algebra, semiring 2000 MR subject classification: 16Y60, 94A15 Document code: A Article ID: 1674-5647(2011)01-0181-12 1 Introduction Valuation algebra is an abstract formalization from artificial intelligence including constraint systems (see [1]), Dempster-Shafer belief functions (see [2]), database theory, logic, and etc. There are three operations including labeling, combination and marginalization in a valua- tion algebra. With these operations on valuations, the system could combine information, and get information on a designated set of variables by marginalization. With further re- search and theoretical development, a new type of valuation algebra named domain-free valuation algebra is also put forward. As valuation algebra is an algebraic structure, the concept of homomorphism between valuation algebras, which is derived from the classic study of universal algebra, has been defined naturally. Meanwhile, recent studies in [3], [4] have showed that valuation alge- bras induced by semirings play a very important role in applications.
    [Show full text]
  • ONTOLOGICAL ENGINEERING for PUBLIC and PRIVATE PROCUREMENT Ontological Engineering for Public and Private Procurement
    EUROPEAN UNION BRAZIL ONTOLOGICAL ENGINEERING FOR PUBLIC AND PRIVATE PROCUREMENT Ontological Engineering for Public and Private Procurement ONTOLOGICAL ENGINEERING FOR PUBLIC AND PRIVATE PROCUREMENT Ontological Engineering for Public and Private Procurement MINISTRY OF GOVERNMENT SECRETARIAT MINISTER OF STATE GEDDEL VIEIRA LIMA SECRETARY OF MICRO AND SMALL ENTERPRISES JOSÉ RICARDO DA VEIGA DIRECTOR OF MARKETS AND INNOVATION ALEXANDRE MONTEIRO E SILVA TECHNICAL SUPPORT TEAM FABIO MEDEIROS DE SOUZA (GENERAL-COORDINATOR OF MARKETS ACCESS) CARLOS VELOSO DE MELO JR. (FOREIGN TRADE ANALYST) JANIO MOREIRA DA COSTA (INFORMATION TECHNOLOGY ANALYST) EUROPEAN UNION DELEGATION TO BRAZIL HEAD OF THE EUROPEAN UNION DELEGATION JOÃO GOMES CRAVINHO MINISTER COUNSELLOR - HEAD OF DEVELOPMENT AND COOPERATION SECTION THIERRY DUDERMEL COOPERATION ATTACHÉ – EU-BRAZIL SECTOR DIALOGUES SUPPORT FACILITY COORDINATOR ONTOLOGICAL ASIER SANTILLAN LUZURIAGA IMPLEMENTING CONSORTIUM CESO DEVELOPMENT CONSULTANTS/FIIAPP/INA/CEPS ENGINEERING FOR MINISTRY OF PLANNING, DEVELOPMENT AND MANAGEMENT PUBLIC AND PRIVATE MINISTER OF STATE DYOGO OLIVEIRA SECRETARY OF MANAGEMENT PROCUREMENT GLEISSON CARDOSO RUBIN PROJECT NATIONAL DIRECTOR MARCELO MENDES BARBOSA CONTACTS PROJECT COORDINATION UNIT Authors: EUROPEAN UNION-BRAZIL SECTOR DIALOGUES SUPPORT FACILITY SECRETARIAT OF PUBLIC MANAGEMENT Edilson Ferneda MINISTRY OF PLANNING, DEVELOPMENT AND MANAGEMENT [email protected] TELEPHONE: + 55 61 2020.4645/4168/4785 Fernando William Cruz [email protected] [email protected] WWW.SECTORDIALOGUES.ORG © 2016 EUROPEAN UNION Brasília • March • 2016 THE CONTENT OF THIS PUBLICATION DOES NOT REFLECT THE OFFICIAL OPINION OF THE EUROPEAN UNION AND THE BRAZILIAN GOVERNMENT. RESPONSIBILITY FOR THE INFORMATION AND VIEWS EXPRESSED THEREIN LIES ENTIRELY WITH THE AUTHOR. Ontological Engineering for Public and Private Procurement LIST OF FIGURES AND CHARTS Figure 1.1 Some of the main knowledge organization systems .......................
    [Show full text]
  • Logic and the Development of Programming Languages, 1930–1975
    LOGIC AND THE DEVELOPMENT OF PROGRAMMING LANGUAGES, 1930–1975 Peter Mark Priestley University College London Thesis submitted in fulfillment of requirements for the degree of PhD. May 2008 2 I, Peter Mark Priestley, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abstract Compared with the history of computing hardware, the history of software is in a relatively unde- veloped state. In particular, the history of programming languages still consists for the most part of technical accounts presenting a rather Whiggish perspective on developments. Given the importance of software in the contemporary world, however, it is important to develop a more sophisticated un- derstanding of the medium in which it is expressed. This thesis considers some aspects of this history with the aim of examining the influence of formal logic on the evolution of notations for expressing computer programs. It is argued that this was not a natural or inevitable application of theory to practice, as is sometimes suggested, but a complex and contingent process with a rich history of its own. Two introductory chapters discuss the work on computability carried out by logicians in the mid-1930s, and the controversial topic of the role of logic in the invention of the computer. The body of the thesis proceeds chronologically, considering machine codes, the introduction of higher level notations, structured programming and software engineering, and the early object-oriented languages. The picture that emerges is that formal logic was deliberately employed by programming lan- guage designers to provide a model for a theoretical understanding of programming languages and the process of program development.
    [Show full text]
  • The Mathematical Theory of Information
    Hecke, Oswald TeichmOller, Ernst Witt, are used for quantitative problems, Richard Courant, Edmund Landau, Fe- The Mathematical while hits (the number of correct clas- lix Hausdorff, Ernst Peschl, Paul Riebe- sifications), reliability, and nuts (von sell, Helmut Ulm, Alfred Stohr, Ernst Neumann's utility) appear in more qual- Zermelo, Gerhard Gentzen, Hans Pe- Theory of itative analyses. tersson, Erich K~ihler, and Wilhelm SOss. Although the author's ambition is to The names on this list range from the Information develop a (if not the) "mathematical the- committed Nazis, through non-Nazi by Jan Kahre ory of information," the embodiment is right wing nationalists, to naive, other- pre-mathematical. It is neither a naive worldly men who seemingly didn't BOSTON, KLUWER. 2002. 520 PP., US$50.O0 mathematical theory (as in naive set the- ISBN: 1-4020-7064-0 know much of what was going on, to ory) nor is it abused mathematics (in the those who stumbled into situations that REVIEWED BY CRISTIAN S. CALUDE sense of mathematics applied in mean- were beyond their control. The stories ingless ways). However, the mathemat- are gripping. In assessing guilt the ndoubtedly, the title of the book ical formalism is too rudimentary for a reader is hard pressed to decide with was well chosen: it is provoca- theory; I illustrate this point with two any certainty which people fall into U tive, promising, and full of infor- examples, the definitions of probability which categories. Teichm/_iller comes mation. Syntactically, the title can be and algorithmic complexity. The proba- off very badly, for example.
    [Show full text]
  • Continuity in Information Algebras 3
    August 28, 2018 22:6 Continuity CONTINUITY IN INFORMATION ALGEBRAS: A SURVEY ON THE RELATIONSHIP BETWEEN TWO TYPES OF INFORMATION ALGEBRAS XUECHONG GUAN∗ College of Mathematics and Information Science Shaanxi Normal University Xi’an, 710062, China [email protected] YONGMING LI College of Computer Science Shaanxi Normal University Xi’an, 710062, China [email protected] Received 24 June 2010 Revised (revised date) In this paper, the continuity and strong continuity in domain-free information algebras and labeled information algebras are introduced respectively. A more general concept of continuous function which is defined between two domain-free continuous information algebras is presented. It is shown that, with the operations combination and focusing, the set of all continuous functions between two domain-free s-continuous information algebras forms a new s-continuous information algebra. By studying the relationship between domain-free information algebras and labeled information algebras, it is demonstrated arXiv:1201.0414v1 [cs.AI] 2 Jan 2012 that they do correspond to each other on s-compactness. Keywords: domain-free continuous information algebra; labeled continuous information algebra; continuous function; compactness. 1. Introduction Inference under uncertainty is a common problem in the real world. Thus, for pieces of information from different sources, there always exist two fundamental aspects that to combine information and to exact information on a designated domain. Based on the above consideration, the valuation-based system (VBS) was first in- troduced by Shenoy. 1 Kohlas, in Ref. 2, has exactly introduced the concept of information algebra. We can see that information algebra is an algebraic structure links up with local computation and inference for treating uncertainty or, more ∗Work Address: College of Mathematic Science, Xuzhou Normal University, Xuzhou, 221116, China.
    [Show full text]
  • On the Structural Link Between Ontologies and Organised Data Sets on the STRUCTURAL LINK BETWEEN ONTOLOGIES AND
    On the Structural Link Between Ontologies and Organised Data Sets ON THE STRUCTURAL LINK BETWEEN ONTOLOGIES AND ORGANISED DATA SETS BY ALICIA MARINACHE1, B.Eng. a thesis submitted to the department of computing and software and the school of graduate studies of mcmaster university in partial fulfilment of the requirements for the degree of Master of Applied Science c Copyright by Alicia Marinache2, February 2016 All Rights Reserved Master of Applied Science (2016) McMaster University (Software Engineering) Hamilton, Ontario, Canada TITLE: On the Structural Link Between Ontologies and Organ- ised Data Sets AUTHOR: Alicia Marinache3 B.Eng. (Software Engineering) University Politechnica, Bucharest, Romania SUPERVISOR: Dr. Ridha Khedri NUMBER OF PAGES: x, 132 ii To my family To my late father, who would have loved to see me pursuing my dreams Abstract "Relationships are complicated, sometimes interesting and can often appear unpredictable. This is just the type of situation that mathematics can help you with." - John D. Barrow, 100 essential things you didn't know you didn't know The proposed work focuses on articulating a mathematical framework to capture the structure of an ontology and relate it to organised data sets. In the discussed frame- work, the ontology structure captures the mereological relationships between con- cepts. It also uses other relationships relevant to the considered domain of application. The organized dataset component of the framework is represented using diagonal-free cylindric algebra. The proposed framework, called the domain-information structure, enables us to link concepts to data sets through a number of typed data operators. The new framework enhances concurrent reasoning on data for knowledge generation, which is essential for handling big data.
    [Show full text]
  • Algebraic Information Theory
    Statistical Information Theory The Need for other Information Theories Algebraic Information Theory Algebraic Information Theory Marc Pouly [email protected] Apsia Breakfast Seminar Interdisciplinary Centre for Security, Reliability and Trust University of Luxembourg June 2011 Marc Pouly Algebraic Information Theory 1/ 25 Statistical Information Theory Hartley’s Information Theory The Need for other Information Theories Shannon’s Information Theory Algebraic Information Theory Hartley’s Measure (1928) Given a set S = fs1;:::; sng how can we measure its uncertainty u(S) 1 uncertainty is a non-negative value 2 monotone: jS1j ≤ jS2j ) u(S1) ≤ u(S2) 3 additive: u(S1 × S2) = u(S1) + u(S2) Theorem: There is only one function that satisfies these properties u(S) = log jSj Marc Pouly Algebraic Information Theory 2/ 25 Statistical Information Theory Hartley’s Information Theory The Need for other Information Theories Shannon’s Information Theory Algebraic Information Theory From Uncertainty to Information The uncertainty of S = fs1;:::; s8g is log 8 = 3 bits Assume now that someone gives more precise information for example that either s3 or s7 has been transmitted 0 We have S = fs3; s7g with a remaining uncertainty log 2 = 1 bit The information reduces uncertainty by log 8 − log 2 = 2 bits Information is the Reduction of Uncertainty ! Marc Pouly Algebraic Information Theory 3/ 25 Statistical Information Theory Hartley’s Information Theory The Need for other Information Theories Shannon’s Information Theory Algebraic Information Theory Shannon’s
    [Show full text]
  • LOGIC JOURNAL of the IGPL
    LOGIC JOURNAL LOGIC ISSN PRINT 1367-0751 LOGIC JOURNAL ISSN ONLINE 1368-9894 of the IGPL LOGIC JOURNAL Volume 22 • Issue 1 • February 2014 of the of the Contents IGPL Original Articles A Routley–Meyer semantics for truth-preserving and well-determined Łukasiewicz 3-valued logics 1 IGPL Gemma Robles and José M. Méndez Tarski’s theorem and liar-like paradoxes 24 Ming Hsiung Verifying the bridge between simplicial topology and algebra: the Eilenberg–Zilber algorithm 39 L. Lambán, J. Rubio, F. J. Martín-Mateos and J. L. Ruiz-Reina INTEREST GROUP IN PURE AND APPLIED LOGICS Reasoning about constitutive norms in BDI agents 66 N. Criado, E. Argente, P. Noriega and V. Botti 22 Volume An introduction to partition logic 94 EDITORS-IN-CHIEF David Ellerman On the interrelation between systems of spheres and epistemic A. Amir entrenchment relations 126 • D. M. Gabbay Maurício D. L. Reis 1 Issue G. Gottlob On an inferential semantics for classical logic 147 David Makinson R. de Queiroz • First-order hybrid logic: introduction and survey 155 2014 February J. Siekmann Torben Braüner Applications of ultraproducts: from compactness to fuzzy elementary classes 166 EXECUTIVE EDITORS Pilar Dellunde M. J. Gabbay O. Rodrigues J. Spurr www.oup.co.uk/igpl JIGPAL-22(1)Cover.indd 1 16-01-2014 19:02:05 Logical Information Theory: New Logical Foundations for Information Theory [Forthcoming in: Logic Journal of the IGPL] David Ellerman Philosophy Department, University of California at Riverside June 7, 2017 Abstract There is a new theory of information based on logic. The definition of Shannon entropy as well as the notions on joint, conditional, and mutual entropy as defined by Shannon can all be derived by a uniform transformation from the corresponding formulas of logical information theory.
    [Show full text]
  • On Mathematical Description of Probabilistic Conditional
    Institute of Information Theory and Automation Academy of Sciences of the Czech Republic On mathematical description of probabilistic conditional indep endence structures Milan Studen y Prague May The thesis for the degree Do ctor of Science in the eld mathematical informatics and theoretical cyb ernetics The thesis was written in the Department of DecisionMaking Theory of the Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and was supp orted by the pro jects K and GACR n It is a result of a longterm research p erformed also within the framework of ESF research program Highly Structured Sto chastic Systems for and the program Causal Interpretation and Identication of Conditional Indep endence Structures of the Fields Institute for Research in Mathematical Sciences University of Toronto Canada September November Address of the author Milan Studen y Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Pod vodarenskou vez Prague Czech Republic email studenyutiacascz web page httpwwwutiacasczuse r datastudenystudeny homehtml Contents Introduction Motivation account Goals of the work Structure of the work Basic concepts Conditional indep endence Semigraphoid prop erties Formal indep endence mo dels Semigraphoids Elementary
    [Show full text]
  • Hyper and Structural Markov Laws for Graphical Models
    Hyper and Structural Markov Laws for Graphical Models Simon Byrne Clare College and Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics This dissertation is submitted for the degree of Doctor of Philosophy University of Cambridge September 2011 Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indi- cated in the text. iii Acknowledgements I would like to thank everyone who helped in the writing of this thesis, especially my supervisor Philip Dawid for the thoughtful discussions and advice over the past three years. I would also like to thank my colleagues in the Statistical Laboratory for their support and friendship. Finally I would like to thank my family, especially Rebecca, without whom I would never have been able to complete this work. v Summary My thesis focuses on the parameterisation and estimation of graphical mod- els, based on the concept of hyper and meta Markov properties. These state that the parameters should exhibit conditional independencies, similar to those on the sample space. When these properties are satisfied, parameter estima- tion may be performed locally, i.e. the estimators for certain subsets of the graph are determined entirely by the data corresponding to the subset. Firstly, I discuss the applications of these properties to the analysis of case-control studies. It has long been established that the maximum like- lihood estimates for the odds-ratio may be found by logistic regression, in other words, the “incorrect” prospective model is equivalent to the correct retrospective model.
    [Show full text]