Appendix 3.6: Chronic Effects Benchmarks

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 3.6: Chronic Effects Benchmarks October 2013 SHELL CANADA ENERGY Appendix 3.6: Chronic Effects Benchmarks Project Number: 13-1346-0001 REPORT APPENDIX 3.6: CHRONIC EFFECTS BENCHMARKS Table of Contents 1.0 INTRODUCTION ............................................................................................................................................................... 1 2.0 CHRONIC EFFECTS BENCHMARKS ............................................................................................................................. 1 2.1 Updated Canadian Council of Ministers of the Environment Protocol .................................................................. 2 2.2 Application ........................................................................................................................................................... 2 2.3 Screening of Constituents for Chronic Effects Benchmark Development ............................................................ 3 2.4 Assessment Methods .......................................................................................................................................... 6 2.4.1 General Approach .......................................................................................................................................... 6 2.5 Procedure ............................................................................................................................................................ 9 2.5.1 Step 1: Creation of a Toxicological Database ................................................................................................ 9 2.5.2 Step 2: Statistical Analysis of Toxicity Data ................................................................................................. 14 2.5.3 Step 3: Identification of Chronic Effects Benchmark .................................................................................... 14 2.6 Chronic Effects Benchmark Results for Metals .................................................................................................. 15 2.6.1 Aluminum ..................................................................................................................................................... 15 2.6.2 Antimony ...................................................................................................................................................... 18 2.6.3 Arsenic ......................................................................................................................................................... 19 2.6.4 Barium .......................................................................................................................................................... 22 2.6.5 Beryllium ...................................................................................................................................................... 22 2.6.6 Boron ........................................................................................................................................................... 22 2.6.7 Cadmium ...................................................................................................................................................... 22 2.6.8 Chromium .................................................................................................................................................... 27 2.6.9 Cobalt ........................................................................................................................................................... 28 2.6.10 Copper ......................................................................................................................................................... 28 2.6.11 Iron ............................................................................................................................................................... 32 2.6.12 Lead ............................................................................................................................................................. 36 2.6.13 Manganese .................................................................................................................................................. 37 2.6.14 Mercury ........................................................................................................................................................ 38 2.6.15 Aquatic Benchmark Derivation ..................................................................................................................... 39 2.6.16 Molybdenum ................................................................................................................................................ 46 October 2013 Project No. 13-1346-0001 i APPENDIX 3.6: CHRONIC EFFECTS BENCHMARKS 2.6.17 Nickel ........................................................................................................................................................... 49 2.6.18 Silver ............................................................................................................................................................ 51 2.6.19 Strontium ...................................................................................................................................................... 53 2.6.20 Vanadium ..................................................................................................................................................... 64 2.6.21 Zinc .............................................................................................................................................................. 64 2.7 Chronic Effects Benchmark Results for Polycyclic Aromatic Hydrocarbons ...................................................... 66 2.7.1 Anthracene ................................................................................................................................................... 67 2.7.2 Fluoranthene ................................................................................................................................................ 69 2.7.3 Fluorene ....................................................................................................................................................... 70 2.7.4 Naphthalene ................................................................................................................................................. 72 2.7.5 Phenanthrene .............................................................................................................................................. 73 2.7.6 Pyrene .......................................................................................................................................................... 75 2.7.7 Application of Polycyclic Aromatic Hydrocarbon Compounds to Groups ..................................................... 76 2.8 Chronic Effects Benchmark Results for Other Constituents .............................................................................. 76 2.8.1 Ammonia ...................................................................................................................................................... 76 2.8.2 Naphthenic Acids ......................................................................................................................................... 77 2.8.3 Sulphide ....................................................................................................................................................... 79 2.8.4 Dissolved Solids ........................................................................................................................................... 79 2.8.5 Sulphate ....................................................................................................................................................... 83 2.8.6 Total Phenolics ............................................................................................................................................ 86 2.9 Selected Chronic Effects Benchmarks ............................................................................................................... 87 3.0 REFERENCES ................................................................................................................................................................ 90 3.1 Personal Communications ............................................................................................................................... 102 TABLES Table 2.3-1 Water Quality Assessment Constituents Considered for the Assessment ..................................................... 3 Table 2.5-1 Compounds and Indicators Included in Polycyclic Aromatic Hydrocarbon Groups ...................................... 10 Table 2.6-1 Available Chronic Freshwater Toxicity Data for Aluminum Retained for Species Sensitivity Distribution ................................................................................................................................................... 16 Table 2.6-2 Available Chronic Freshwater Toxicity Data for Arsenic .............................................................................. 20 Table 2.6-3 Summary of Compiled Chronic (Long-term) Freshwater Aquatic Toxicity Tests With Cadmium Exposures, Indicating Preferred Test Endpoint for Each Study, and Species Mean Values ....................... 24 October 2013 Project No. 13-1346-0001 ii APPENDIX 3.6: CHRONIC EFFECTS BENCHMARKS Table
Recommended publications
  • An Analysis of Primary and Secondary Production in Lake Kariba in a Changing Climate
    AN ANALYSIS OF PRIMARY AND SECONDARY PRODUCTION IN LAKE KARIBA IN A CHANGING CLIMATE MZIME R. NDEBELE-MURISA A thesis submitted in partial fulfillment of the requirements for the degree of Doctor Philosophiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape Supervisor: Prof. Charles Musil Co-Supervisor: Prof. Lincoln Raitt May 2011 An analysis of primary and secondary production in Lake Kariba in a changing climate Mzime Regina Ndebele-Murisa KEYWORDS Climate warming Limnology Primary production Phytoplankton Zooplankton Kapenta production Lake Kariba i Abstract Title: An analysis of primary and secondary production in Lake Kariba in a changing climate M.R. Ndebele-Murisa PhD, Biodiversity and Conservation Biology Department, University of the Western Cape Analysis of temperature, rainfall and evaporation records over a 44-year period spanning the years 1964 to 2008 indicates changes in the climate around Lake Kariba. Mean annual temperatures have increased by approximately 1.5oC, and pan evaporation rates by about 25%, with rainfall having declined by an average of 27.1 mm since 1964 at an average rate of 6.3 mm per decade. At the same time, lake water temperatures, evaporation rates, and water loss from the lake have increased, which have adversely affected lake water levels, nutrient and thermal dynamics. The most prominent influence of the changing climate on Lake Kariba has been a reduction in the lake water levels, averaging 9.5 m over the past two decades. These are associated with increased warming, reduced rainfall and diminished water and therefore nutrient inflow into the lake. The warmer climate has increased temperatures in the upper layers of lake water, the epilimnion, by an overall average of 1.9°C between 1965 and 2009.
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • Alaska's Copper River: Humankind in a Changing World
    United States Department of Agriculture Alaska’s Copper River: Forest Service Humankind in a Changing World Pacific Northwest Research Station General Technical Report PNW-GTR-480 July 2000 Technical Editors Harriet H. Christensen is research social scientist (formerly director of the Copper River Delta Institute), U.S. Department of Agriculture, Forest Service, Pacific North- west Research Station, 4043 Roosevelt Way, Seattle, WA 98105-6497; Louise Mastrantonio is a consultant, Portland, OR; John C. Gordon is Pinchot professor, School of Forestry and Environmental Studies, Yale University, 205 Prospect Street, New Haven, CT 06511; and Bernard T. Bormann is a research plant physiologist and ecologist and team leader, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331. See detailed map of the Copper River Delta in pocket on inside back cover. Alaska’s Copper River: Humankind in a Changing World Harriet H. Christensen, Louise Mastrantonio, John C. Gordon, and Bernard T. Bormann Technical Editors U.S. Department of Agriculture Forest Service Pacific Northwest Research Station Portland, Oregon General Technical Report PNW-GTR-480 July 2000 Abstract Christensen, Harriet H.; Mastrantonio, Louise; Gordon, John C.; Bormann, Bernard T., tech. eds. 2000. Alaska’s Copper River: humankind in a changing world. Gen. Tech. Rep. PNW-GTR-480. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 20 p. Opportunities for natural and social science research were assessed in the Copper River ecosystem including long-term, integrated studies of ecosystem structure and function. The ecosystem is one where change, often rapid, cataclysmic change, is the rule rather than the exception.
    [Show full text]
  • Comment 1. for Ease of Compliance, the Savannah River Site (SRS) Suggests That a Flowchart Be Included in the Permit to Facilitate Compliance Decisions
    Comment 1. For ease of compliance, the Savannah River Site (SRS) suggests that a flowchart be included in the permit to facilitate compliance decisions. The permit requires navigating between several different sections and is sometimes confusing as to what is actually required. The flow chart could start by determining eligibility for coverage, then determine any appropriate numeric limits, then determine specific benchmarks and other criteria for an industrial sector, and lastly develop a list of submittals required and dates for such. Response: The Department sees value in a flowchart and may develop one in the future. Comment 2. SIC codes are referenced throughout. The source of these codes is not referenced until you get to Table D-1 where it is footnoted as, “1 A complete list of SIC Codes (and conversions from the newer North American Industry Classification System” (NAICS)) can be obtained from the Internet at www.census.gov/epcd/www/naics.html...” The web site enables a user to look up the codes to better determine exactly what activities are covered, the only search that can be performed is on the 2007 and 2002 NAICS codes, not SIC codes. This does not allow a search on the codes listed in this draft permit. Selecting “Concordances” on the left side of the web page enables a download of various conversion tables to convert from NAICS to SIC and vice versa. It appears that the SIC codes date back to 1987. If SCDHEC (and EPA) are going to generate new permits, it is suggested that the SIC codes in the permit be updated to 2007 NAICS codes.
    [Show full text]
  • THREE BROOD STATIC RENEWAL TOXICITY TEST USING Ceriodaphnia Dubia
    STANDARD OPERATING PROCEDURES SOP: 2025 PAGE: 1 of 10 REV: 1.0 DATE: 06/24/02 THREE BROOD STATIC RENEWAL TOXICITY TEST USING Ceriodaphnia dubia CONTENTS 1.0 SCOPE AND APPLICATION 2.0 METHOD SUMMARY 3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING AND STORAGE* 4.0 INTERFERENCES AND POTENTIAL PROBLEMS 5.0 EQUIPMENT/APPARATUS 5.1 Apparatus* 5.2 Test Organisms 5.3 Equipment for Physical/Chemical Analysis 6.0 REAGENTS* 7.0 PROCEDURES* 8.0 CALCULATIONS* 9.0 QUALITY ASSURANCE/QUALITY CONTROL 10.0 DATA VALIDATION 11.0 HEALTH AND SAFETY 12.0 REFERENCES* 13.0 APPENDIX A - Summary of Test Conditions for Ceriodaphnia dubia Survival and Reproduction Test * These sections affected by Revision 1.0. SUPERCEDES: SOP #2025, Revision 0.0; 12/14/00. EPA Contract No. EP-W-09-031. STANDARD OPERATING PROCEDURES SOP: 2025 PAGE: 2 of 10 REV: 1.0 DATE: 06/24/02 THREE BROOD STATIC RENEWAL TOXICITY TEST USING Ceriodaphnia dubia 1.0 SCOPE AND APPLICATION The procedure for conducting a 7-day toxicity test using Ceriodaphnia dubia (C. dubia) is described below. This test is applicable to effluents, leachates, and liquid phases of sediments which require a chronic toxicity estimate. This method uses reproductive success and mortality as endpoints. These are standard (i.e., typically applicable) operating procedures which may be varied or changed as required, dependent on site conditions, equipment limitations, or limitations imposed by the site specific procedure. In all instances, the ultimate procedures employed must be documented and associated with the final report. Mention of trade names or commercial products does not constitute United States Environmental Protection Agency (U.S.
    [Show full text]
  • Nonradiological Environmental Monitoring Program
    Chapter 4: Nonradiological Environmental Monitoring Program he Savannah River Site (SRS) nonradiological environmental monitoring program serves two purposes: it confirms the Site is complying with state and federal regulations and Tpermits , and it monitors any effects SRS has on the environment, both onsite and offsite. SRS monitors permitted point-source discharges from onsite facilities for nonradiological parameters to ensure it is complying with regulations and permit requirements. SRS collects and analyzes environmental media such as air, water, sediment, and fish for nonradiological parameters to evaluate the effect of Site operations on the environment. 2019 Highlights Effluent Releases • Nonradiological effluent releases for all categories except industrial wastewater met permit limits and applicable standards. • SRS reported only 4 exceptions out of 2,638 analyses at SRS National Pollutant Discharge Elimination System (NPDES) industrial wastewater outfalls, a 99.8% compliance rate. • All SRS industrial stormwater outfalls under the NPDES permit were compliant. Onsite Drinking Water All SRS drinking water systems complied with South Carolina Department of Health and Environmental Control (SCDHEC) and U.S. Environmental Protection Agency (EPA) water quality standards. Surveillance Program • SRS industrial wastewater and industrial stormwater discharges are not significantly affecting the water quality of onsite streams and the Savannah River. • Sediment results from SRS streams, stormwater basins, and the Savannah River were consistent with the background control locations and were comparable with historical levels. • Fish flesh sample results were consistent with historical levels. Environmental Report 2019 (SRNS-RP-2020-00064) 4-1 Nonradiological Environmental Monitoring Program 4.1 INTRODUCTION Chapter 4—Key Terms Environmental monitoring programs at SRS Effluent is a release to the environment of treated examine both radiological and nonradiological or untreated water or air from a pipe or a stack.
    [Show full text]
  • Sem Título-2
    Ecotoxicological analysis of the water and sediment from middle and low Tietê River cascade reservoirs (State of São Paulo, Brazil). RODGHER1, S., ESPÍNDOLA1, E.L.G., ROCHA2, O., FRACÁCIO3, R., PEREIRA1, R.H.G. & RODRIGUES1, M.H.S. 1 University of São Paulo, Engineering School of São Carlos, Water Resources Center and Applied Ecology. Av. Trabalhador São Carlense, n0 400, C.P 292. Cep 13.560-970 – São Carlos/SP, Brazil. [email protected]; [email protected] 2,3 Dept of Hydrobiology and Ecology and Evolutionary Biology. Federal University of São Carlos. Via Washington Luiz, km 235 – C.P 676. Cep 13565-905 – São Carlos/SP, Brazil. [email protected]; [email protected] ABSTRACT: Ecotoxicological analysis of the water and sediment from the middle and low Tietê River cascade reservoirs (State of São Paulo, Brazil). This study tried to evaluate the environmental quality of the reservoirs from the middle and low Tietê River (SP) through ecotoxicological analyses. Water and sediment samples were obtained in four different periods (October/ 99, February, May and July/00), in 15 sampling stations. The samples were used for bioassays of acute toxicity with Daphnia similis and chronic with Ceriodaphnia dubia, as well as for determination of metals (cadmium, cobalt, chromium, copper and zinc) concentration in water and sediment. The results demonstrated that in the rainy period a larger number of water and sediment samples caused chronic toxicity effect in Ceriodaphnia dubia. The bioassays only indicated acute toxicity for Daphnia similis in stations downstream of Barra Bonita Reservoir. However, the results of chronic toxicity, showed a decreasing tendency in toxicity (from Barra Bonita to Três Irmãos Reservoirs), in most sampling periods.
    [Show full text]
  • An Investigation Into Australian Freshwater Zooplankton with Particular Reference to Ceriodaphnia Species (Cladocera: Daphniidae)
    An investigation into Australian freshwater zooplankton with particular reference to Ceriodaphnia species (Cladocera: Daphniidae) Pranay Sharma School of Earth and Environmental Sciences July 2014 Supervisors Dr Frederick Recknagel Dr John Jennings Dr Russell Shiel Dr Scott Mills Table of Contents Abstract ...................................................................................................................................... 3 Declaration ................................................................................................................................. 5 Acknowledgements .................................................................................................................... 6 Chapter 1: General Introduction .......................................................................................... 10 Molecular Taxonomy ..................................................................................................... 12 Cytochrome C Oxidase subunit I ................................................................................... 16 Traditional taxonomy and cataloguing biodiversity ....................................................... 20 Integrated taxonomy ....................................................................................................... 21 Taxonomic status of zooplankton in Australia ............................................................... 22 Thesis Aims/objectives ..................................................................................................
    [Show full text]
  • Ecology and Potential for Fishery of the Small Barbs (Cyprinidae, Teleostei) of Lake Tana, Ethiopia
    Promotoren: prof. dr. Jan W.M. Osse, hoogleraar in de algemene dierkunde, co-promotor: dr. Ferdinand A. Sibbing, universitair hoofddocent bij de leerstoelgroep Experimentele Zo¨ologie, dr. Jacobus Vijverberg, senior onderzoeker bij het NIOO-KNAW Centrum voor Limnologie, Nieuwersluis, overige leden promotiecommissie: prof. dr. Paul Skelton, JLB Smith Institute of Ichthyology, South Africa, prof. dr. Marten Scheffer, Wageningen Universiteit, dr. Leo A.J. Nagelkerke, Wageningen Universiteit, dr. Seyoum Mengistu, Addis Ababa University, Ethiopia, dr. Jan H. Wanink, Universiteit Leiden. ECOLOGY AND POTENTIAL FOR FISHERY OF THE SMALL BARBS (CYPRINIDAE, TELEOSTEI) OF LAKE TANA, ETHIOPIA Eshete Dejen Dresilign Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. ir. L. Speelman, in het openbaar te verdedigen op dinsdag 2 september 2003 des namiddags te vier uur in de Aula. Dejen Dresilign, E. (2003). The small barbs of Lake Tana. Doctoral thesis, Experimental Zoology Group, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands. Subject headings: small Barbus / taxonomy / ecology / zooplankton / zooplanktivorous / fishery / Lake Tana, Ethiopia ISBN: 90-5808-869-3 To Neter Alemu (my mother) and Dejen Dresilign (my father) vi Contents 1 Introduction 1 1.1 General introduction .................................... 1 1.1.1 Importance of small pelagics for fisheries ..................... 1 1.1.2 Zooplankton and zooplanktivorous fish in the food web of tropical waterbodies 2 1.1.3 Lake Tana and its environment .......................... 3 1.1.4 Lake Tana and its fish community ........................ 4 1.1.5 Initiation and objectives of the research ..................... 6 1.1.6 Sampling Programme ............................... 8 1.2 Introduction to the various chapters ..........................
    [Show full text]
  • Mountain Ponds and Lakes Monitoring 2016 Results from Lassen Volcanic National Park, Crater Lake National Park, and Redwood National Park
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Mountain Ponds and Lakes Monitoring 2016 Results from Lassen Volcanic National Park, Crater Lake National Park, and Redwood National Park Natural Resource Data Series NPS/KLMN/NRDS—2019/1208 ON THIS PAGE Unknown Darner Dragonfly perched on ground near Widow Lake, Lassen Volcanic National Park. Photograph by Patrick Graves, KLMN Lakes Crew Lead. ON THE COVER Summit Lake, Lassen Volcanic National Park Photograph by Elliot Hendry, KLMN Lakes Crew Technician. Mountain Ponds and Lakes Monitoring 2016 Results from Lassen Volcanic National Park, Crater Lake National Park, and Redwood National Park Natural Resource Data Series NPS/KLMN/NRDS—2019/1208 Eric C. Dinger National Park Service 1250 Siskiyou Blvd Ashland, Oregon 97520 March 2019 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Whole Effluent Toxicity Testing and the Toxicity Reduction Evaluation
    TNI WETT Expert Committee Presenters: Ginger Briggs, President, Bio-Analytical Laboratories Katie Payne, Quality Assurance Officer, Nautilus Environmental Beth Thompson, Quality Assurance Manager, Shealy Consulting 1 An important component of EPA’s integrated approach to protect surface waters from pollutants. WET is “the aggregate toxic effect of an effluent measured directly by a toxicity test for acute and chronic effects”. WET tests are used to determine the toxicity of an effluent over a certain period of time. Whole effluent toxicity is measured as opposed to chemical specific toxicity. Typically included in NPDES permits. 2 Part 136 of the Clean Water Act (CWA): EPA promulgated 16 methods for acute and short term 40 CFR 136.3; 67 FR 69952, November 19, 2002 test species to use to estimate acute and chronic toxicity. EPA’s test methods must be followed as they are written, methods are ‘codified’ in regulation. NPDES permits and permit re-issuance incorporate the method/manuals into the permit; along with clarifications and errata. Acute Tests ◦ Endpoint is mortality. ◦ Test duration is typically 24, 48 or 96 hours. Short-Term Tests to Estimate Chronic Toxicity ◦ Endpoints are growth, reproduction, mortality/immobility. ◦ Test duration is 8 days or less. method/species determinant of duration. 4 ACUTE TOXICITY – FRESHWATER, MARINE, AND ESTUARINE METHODS No. Method Title ACUTE TOXICITY, FRESHWATER ORGANISMS 2000.0 Fathead Minnow, Pimephales promelas, and Bannerfin shiner, Cyprinella leedsi 2002.0 Daphnia, Ceriodaphnia dubia
    [Show full text]
  • APPENDIX 3.6 Supporting Information for Aquatic Resources
    APPENDIX 3.6 Supporting Information for Aquatic Resources APPENDIX 3.6 Supporting Information for Aquatic Resources Table of Contents 1.0 INTRODUCTION .............................................................................................................................................................. 1 2.0 CHRONIC EFFECTS BENCHMARKS ............................................................................................................................. 1 2.1 Updated Canadian Council of Ministers of the Environment Protocol ................................................................. 1 2.2 Application ........................................................................................................................................................... 2 2.3 Screening of Constituents for Chronic Effects Benchmark Development ............................................................ 2 2.4 Methods ............................................................................................................................................................... 5 2.4.1 General Approach .................................................................................................................................... 5 2.5 Procedure ............................................................................................................................................................ 8 2.5.1 Step 1: Creation of a Toxicological Database ..........................................................................................
    [Show full text]