Ptc Plasmids from Sulfolobus Species in the Geothermal Area Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CRISPR Loci Reveal Networks of Gene Exchange in Archaea Avital Brodt, Mor N Lurie-Weinberger and Uri Gophna*
Brodt et al. Biology Direct 2011, 6:65 http://www.biology-direct.com/content/6/1/65 RESEARCH Open Access CRISPR loci reveal networks of gene exchange in archaea Avital Brodt, Mor N Lurie-Weinberger and Uri Gophna* Abstract Background: CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past “infection history” of the organism. Results: Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. Conclusions: CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti- plasmid defense. Open peer review: This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. -
Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline
Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline • Phlogenetics of Archaea • Phlogenetics of archaeal lipids • Papers Phyla • Two? main phyla – Euryarchaeota • Methanogens • Extreme halophiles • Extreme thermophiles • Sulfate-reducing – Crenarchaeota • Extreme thermophiles – Korarchaeota? • Hyperthermophiles • indicated only by environmental DNA sequences – Nanoarchaeum? • N. equitans a fast evolving euryarchaeal lineage, not novel, early diverging archaeal phylum – Ancient archael group? • In deepest brances of Crenarchaea? Euryarchaea? Archaeal Lipids • Methanogens – Di- and tetra-ethers of glycerol and isoprenoid alcohols – Core mostly archaeol or caldarchaeol – Core sometimes sn-2- or Images removed due to sn-3-hydroxyarchaeol or copyright considerations. macrocyclic archaeol –PMI • Halophiles – Similar to methanogens – Exclusively synthesize bacterioruberin • Marine Crenarchaea Depositional Archaeal Lipids Biological Origin Environment Crocetane methanotrophs? methane seeps? methanogens, PMI (2,6,10,15,19-pentamethylicosane) methanotrophs hypersaline, anoxic Squalane hypersaline? C31-C40 head-to-head isoprenoids Smit & Mushegian • “Lost” enzymes of MVA pathway must exist – Phosphomevalonate kinase (PMK) – Diphosphomevalonate decarboxylase – Isopentenyl diphosphate isomerase (IPPI) Kaneda et al. 2001 Rohdich et al. 2001 Boucher et al. • Isoprenoid biosynthesis of archaea evolved through a combination of processes – Co-option of ancestral enzymes – Modification of enzymatic specificity – Orthologous and non-orthologous gene -
Template for Taxonomic Proposal to the ICTV Executive Committee to Create a New Family
Template for Taxonomic Proposal to the ICTV Executive Committee To create a new Family Code† 2005.088B.04 To create a new family* Code† 2005.089B.04 To name the new family* Ampullaviridae † Code 2005.090B.04 To designate the following genera as part of the new family*: Ampullavirus † Assigned by ICTV officers ° Leave blank is not appropriate * repeat these lines and the corresponding arguments for each genus created in the family Author(s) with email address(es) of the Taxonomic Proposal David Prangishvili [email protected] Old Taxonomic Order Order Family Genus Ampullavirus Type Species Acidianus bottle-shaped virus Species in the Genus Acidianus bottle-shaped virus Tentative Species in the Genus none Unassigned Species in the family none New Taxonomic Order Order Family Ampullaviridae Genus Ampullavirus Type Species Acidianus bottle-shaped virus Species in the Genus Acidianus bottle-shaped virus Tentative Species in the Genus none Unassigned Species in the family none ICTV-EC comments and response of the SG Argumentation to create a new family: We propose classifying the Acidianus bottle-shaped virus as a first representative of a new family because of the unique bottle-shaped morphology of the virion which, to our knowledge, has not previously been observed in the viral world. Moreover, the complex asymmetric virion, lacking elements with icosahedral or regular helical symmetry, with two completely different structures at each end and an envelope encasing a funnel-shaped core represents, as far as we can judge, represents a principally novel type of virus particle. The funnel-shaped core of the enveloped virion consists of three distinct structural units: the “stopper”, the nucleoprotein cone, consisting of double-stranded DNA and DNA-binding proteins, and the inner core. -
Sulfolobus Acidocaldarius Claus AAGAARD, JACOB Z
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 12285-12289, December 1995 Biochemistry Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius CLAus AAGAARD, JACOB Z. DALGAARD*, AND ROGER A. GARRETr Institute of Molecular Biology, Copenhagen University, S0lvgade 83 H, 1307 Copenhagen K, Denmark Communicated by Carl R. Woese, University of Illinois at Urbana-Champaign, Urbana, IL, August 28, 1995 ABSTRACT Some intron-containing rRNA genes of ar- experiments suggest, but do not establish, that the intron is chaea encode homing-type endonucleases, which facilitate mobile between yeast cells. intron insertion at homologous sites in intron- alleles. These To test whether the archaeal introns constitute mobile archaeal rRNA genes, in contrast to their eukaryotic coun- elements, we electroporated the intron-containing 23S rRNA terparts, are present in single copies per cell, which precludes gene from the archaeal hyperthermophile Desulfurococcus intron homing within one cell. However, given the highly mobilis on nonreplicating bacterial vectors into an intron- conserved nature of the sequences flanking the intron, hom- culture of Sulfolobus acidocaldarius. In the presence of I-Dmo ing may occur in intron- rRNA genes of other archaeal cells. I, the endonuclease encoded by the D. mobilis intron (20), the To test whether this occurs, the intron-containing 23S rRNA intron was shown to home in the chromosomal DNA of intron- gene of the archaeal hyperthermophile Desulfurococcus mobi- cells of S. acidocaldarius. Moreover, using a double drug- lis, carried on nonreplicating bacterial vectors, was electro- resistant mutant (21), it was demonstrated that the intron can porated into an intron- culture of Sulfolobus acidocaldarius. -
The Isolation of Viruses Infecting Archaea
Portland State University PDXScholar Biology Faculty Publications and Presentations Biology 2010 The Isolation of Viruses Infecting Archaea Kenneth M. Stedman Portland State University Kate Porter Mike L. Dyall-Smith Follow this and additional works at: https://pdxscholar.library.pdx.edu/bio_fac Part of the Bacteria Commons, Biology Commons, and the Viruses Commons Let us know how access to this document benefits ou.y Citation Details Stedman, Kenneth M., Kate Porter, and Mike L. Dyall-Smith. "The isolation of viruses infecting Archaea." Manual of aquatic viral ecology. American Society for Limnology and Oceanography (ASLO) (2010): 57-64. This Article is brought to you for free and open access. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. MANUAL of MAVE Chapter 6, 2010, 57–64 AQUATIC VIRAL ECOLOGY © 2010, by the American Society of Limnology and Oceanography, Inc. The isolation of viruses infecting Archaea Kenneth M. Stedman1, Kate Porter2, and Mike L. Dyall-Smith3 1Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97207, USA 2Biota Holdings Limited, 10/585 Blackburn Road, Notting Hill Victoria 3168, Australia 3Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany Abstract A mere 50 viruses of Archaea have been reported to date; these have been investigated mostly by adapting methods used to isolate bacteriophages to the unique growth conditions of their archaeal hosts. The most numer- ous are viruses of thermophilic Archaea. -
The Stability of Lytic Sulfolobus Viruses
The Stability of Lytic Sulfolobus Viruses A thesis submitted to the Graduate School of the University of Cincinnati In partial fulfillment of The requirements for the degree of Master of Sciences in the Department of Biological Sciences of the College of Arts and Sciences 2017 Khaled S. Gazi B.S. Umm Al-Qura University, 2011 Committee Chair: Dennis W. Grogan, Ph.D. i Abstract Among the three domains of cellular life, archaea are the least understood, and functional information about archaeal viruses is very limited. For example, it is not known whether many of the viruses that infect hyperthermophilic archaea retain infectivity for long periods of time under the extreme conditions of geothermal environments. To investigate the capability of viruses to Infect under the extreme conditions of geothermal environments. A number of plaque- forming viruses related to Sulfolobus islandicus rod-shaped viruses (SIRVs), isolated from Yellowstone National Park in a previous study, were evaluated for stability under different stress conditions including high temperature, drying, and extremes of pH. Screening of 34 isolates revealed a 95-fold range of survival with respect to boiling for two hours and 94-fold range with respect to drying for 24 hours. Comparison of 10 viral strains chosen to represent the extremes of this range showed little correlation of stability with respect to different stresses. For example, three viral strains survived boiling but not drying. On the other hand, five strains that survived the drying stress did not survive the boiling temperature, whereas one strain survived both treatments and the last strain showed low survival of both. -
Resolution of Carbon Metabolism and Sulfur-Oxidation Pathways of Metallosphaera Cuprina Ar-4 Via Comparative Proteomics
JOURNAL OF PROTEOMICS 109 (2014) 276– 289 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jprot Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics Cheng-Ying Jianga, Li-Jun Liua, Xu Guoa, Xiao-Yan Youa, Shuang-Jiang Liua,c,⁎, Ansgar Poetschb,⁎⁎ aState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China bPlant Biochemistry, Ruhr University Bochum, Bochum, Germany cEnvrionmental Microbiology and Biotechnology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China ARTICLE INFO ABSTRACT Article history: Metallosphaera cuprina is able to grow either heterotrophically on organics or autotrophically Received 16 March 2014 on CO2 with reduced sulfur compounds as electron donor. These traits endowed the species Accepted 6 July 2014 desirable for application in biomining. In order to obtain a global overview of physiological Available online 14 July 2014 adaptations on the proteome level, proteomes of cytoplasmic and membrane fractions from cells grown autotrophically on CO2 plus sulfur or heterotrophically on yeast extract Keywords: were compared. 169 proteins were found to change their abundance depending on growth Quantitative proteomics condition. The proteins with increased abundance under autotrophic growth displayed Bioleaching candidate enzymes/proteins of M. cuprina for fixing CO2 through the previously identified Autotrophy 3-hydroxypropionate/4-hydroxybutyrate cycle and for oxidizing elemental sulfur as energy Heterotrophy source. The main enzymes/proteins involved in semi- and non-phosphorylating Entner– Industrial microbiology Doudoroff (ED) pathway and TCA cycle were less abundant under autotrophic growth. Also Extremophile some transporter proteins and proteins of amino acid metabolism changed their abundances, suggesting pivotal roles for growth under the respective conditions. -
Sulfolobus As a Model Organism for the Study of Diverse
SULFOLOBUS AS A MODEL ORGANISM FOR THE STUDY OF DIVERSE BIOLOGICAL INTERESTS; FORAYS INTO THERMAL VIROLOGY AND OXIDATIVE STRESS by Blake Alan Wiedenheft A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana November 2006 © COPYRIGHT by Blake Alan Wiedenheft 2006 All Rights Reserved ii APPROVAL of a dissertation submitted by Blake Alan Wiedenheft This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Mark Young and Dr. Trevor Douglas Approved for the Department of Microbiology Dr.Tim Ford Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University – Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microfilm along with the non-exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Blake Alan Wiedenheft November, 2006 iv DEDICATION This work was funded in part through grants from the National Aeronautics and Space Administration Program (NAG5-8807) in support of Montana State University’s Center for Life in Extreme Environments (MCB-0132156), and the National Institutes of Health (R01 EB00432 and DK57776). -
Counts Metabolic Yr10.Pdf
Advanced Review Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms James A. Counts,1 Benjamin M. Zeldes,1 Laura L. Lee,1 Christopher T. Straub,1 Michael W.W. Adams2 and Robert M. Kelly1* The current upper thermal limit for life as we know it is approximately 120C. Microorganisms that grow optimally at temperatures of 75C and above are usu- ally referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, hetero- trophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs— basically, anywhere there is hot water. Initial efforts to study extreme thermo- philes faced challenges with their isolation from difficult to access locales, pro- blems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermo- philes were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiologi- cal, metabolic and biotechnological features. The bacterial genera Caldicellulosir- uptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermo- philes to date. The recent emergence of genetic tools for many of these organ- isms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. -
Spindle Shaped Virus (SSV) : Mutants and Their Infectivity
Portland State University PDXScholar University Honors Theses University Honors College 2014 Spindle Shaped Virus (SSV) : Mutants and Their Infectivity Thien Hoang Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses Let us know how access to this document benefits ou.y Recommended Citation Hoang, Thien, "Spindle Shaped Virus (SSV) : Mutants and Their Infectivity" (2014). University Honors Theses. Paper 231. https://doi.org/10.15760/honors.56 This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Spindle Shaped Virus (SSV): Mutants and Their Infectivity by Thien Hoang An undergraduate honors thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in University Honors and Biology: Micro/molecular biology Thesis Adviser Dr. Kenneth Stedman Portland State University 2014 Abstract: SSV1 is an archaeal virus that infects the thermoacidophile Sulfolobus residing in hot springs. The lemon shaped/spindle-shaped fuselloviruses (SSV) that infect Sulfolobus solfataricus is quite morphologically different from almost all other viruses. Because these archaeal viruses live in hot springs with high temperatures and low pH, their genomes and structures have adapted to withstand such harsh conditions. Little research has been done on these extreme viruses, and of the little research, SSV has been the most prominent. Not much is known about the genes that the genome encodes and so I have inserted transposons randomly into genome to determine functionality. -
Sp. Nov. and Acidianus Brierleyi Comb
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1986, p. 559-564 Vol. 36, No. 4 0020-7713/86/040559-06$02.OO/O Copyright 0 1986, International Union of Microbiological Societies Acidianus infernus gen. nov.? sp. nov. and Acidianus brierleyi comb. nov. : Facultatively Aerobic, Extremely Acidophilic Thermophilic Sulfur-Metabolizing Archaebacteria ANDREAS SEGERER,l ANNEMARIE NEUNER,I JAKOB K. KRISTJANSSON,2 AND KARL 0. STETTER1* Lehrstuhl fur Mikrobiologie, Universitat, 8400 Regensburg, Federal Republic of Germany' and Institute of Biology, University of Iceland, Reykjavik, Icelana A new genus, Acidianus, is characterized from studies of 26 isolates of thermoacidophilic archaebacteria from different solfatara fields and marine hydrothermal systems; these isolates grow as facultative aerobes by lithotrophic oxidation and reduction of So, respectively, and are therefore different from the strictly aerobic Sulfolobus species. The Acidianus isolates have a deoxyribonucleic acid guanine-plus-cytosinecontent of 31 mol%. In contrast, two of three Sulfolobus species, including the type species, have a guanine-plus-cytosine content of 37 mol%; Sulfolobus brierleyi is the exception, with a guanine-plus-cytosine content of 31 mol%. In contrast to its earlier descriptions, S. brierleyi is able to grow strictly anaerobically by hydrogen-sulfur autotrophy. Therefore, it is described here as a member of the genus Acidiunus. The following species are assigned to the genus Acidiunus: Acidiunus infernus sp. nov. (type strain, strain DSM 3191) and Acidiunus brierleyi comb. nov. (type strain, strain DSM 1651). The following two major groups of extremely thermophilic MATERIALS AND METHODS So-metabolizing archaebacteria (12) that thrive within acidic solfatara fields have been described previously: (i) the genus Bacterial strains. -
Post-Genomic Characterization of Metabolic Pathways in Sulfolobus Solfataricus
Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus Jasper Walther Thesis committee Thesis supervisors Prof. dr. J. van der Oost Personal chair at the laboratory of Microbiology Wageningen University Prof. dr. W. M. de Vos Professor of Microbiology Wageningen University Other members Prof. dr. W.J.H. van Berkel Wageningen University Prof. dr. V.A.F. Martins dos Santos Wageningen University Dr. T.J.G. Ettema Uppsala University, Sweden Dr. S.V. Albers Max Planck Institute for Terrestrial Microbiology, Marburg, Germany This research was conducted under the auspices of the Graduate School VLAG Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus Jasper Walther Thesis Submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 23 January 2012 at 11 a.m. in the Aula. Jasper Walther Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus, 164 pages. Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-203-3 Table of contents Chapter 1 Introduction 1 Chapter 2 Hot Transcriptomics 17 Chapter 3 Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis 45 Chapter 4 Identification of the Missing