Deep Fault Drilling Project—Alpine Fault, New Zealand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frictional Strength, Rate-Dependence, and Healing in DFDP-1 Borehole Samples from the Alpine Fault, New Zealand
TECTO-126306; No of Pages 8 Tectonophysics xxx (2014) xxx–xxx Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Frictional strength, rate-dependence, and healing in DFDP-1 borehole samples from the Alpine Fault, New Zealand Matt J. Ikari a,⁎, Brett M. Carpenter b,c, Achim J. Kopf a, Chris Marone c a MARUM, Center for Marine Environmental Sciences, University of Bremen, Germany b Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy c Department of Geosciences, The Pennsylvania State University, USA article info abstract Article history: The Alpine Fault in southern New Zealand is a major plate-boundary fault zone that, according to various lines of Received 22 January 2014 evidence, may be nearing the end of its seismic cycle and approaching earthquake failure. In order to better char- Received in revised form 26 April 2014 acterize this fault and obtain a better understanding of its seismic potential, two pilot boreholes have been com- Accepted 2 May 2014 pleted as part of a larger drilling project. Samples representative of the major lithologic subdivisions of the fault Available online xxxx zone at shallow (~100 m) depths were recovered and investigated in laboratory friction experiments. We show here that materials from within and very near the principal slip zone (PSZ) tend to exhibit velocity strengthening Keywords: Fault frictional behavior, and restrengthen (heal) rapidly compared to samples of the wall rock recovered near the PSZ. Friction Fluid saturation causes the PSZ to be noticeably weaker than the surrounding cataclasites (μ = 0.45), and elim- Earthquake inates the velocity-weakening behavior in these cataclasites that is observed in dry tests. -
Using Campaign GPS Data to Model Slip Rates on the Alpine Fault
New Zealand Journal of Geology and Geophysics ISSN: 0028-8306 (Print) 1175-8791 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzg20 A geodetic study of the Alpine Fault through South Westland: using campaign GPS data to model slip rates on the Alpine Fault Chris J. Page, Paul H. Denys & Chris F. Pearson To cite this article: Chris J. Page, Paul H. Denys & Chris F. Pearson (2018): A geodetic study of the Alpine Fault through South Westland: using campaign GPS data to model slip rates on the Alpine Fault, New Zealand Journal of Geology and Geophysics, DOI: 10.1080/00288306.2018.1494006 To link to this article: https://doi.org/10.1080/00288306.2018.1494006 View supplementary material Published online: 09 Aug 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzg20 NEW ZEALAND JOURNAL OF GEOLOGY AND GEOPHYSICS https://doi.org/10.1080/00288306.2018.1494006 RESEARCH ARTICLE A geodetic study of the Alpine Fault through South Westland: using campaign GPS data to model slip rates on the Alpine Fault Chris J. Page, Paul H. Denys and Chris F. Pearson School of Surveying, University of Otago, Dunedin, New Zealand ABSTRACT ARTICLE HISTORY Although the Alpine Fault has been studied extensively, there have been few geodetic studies Received 11 December 2017 in South Westland. We include a series of new geodetic measurements from sites across the Accepted 25 June 2018 Haast Pass and preliminary results from a recently established network, the Cascade array KEYWORDS that extends from the Arawhata River to Lake McKerrow, a region that previously had few Alpine Fault; slip rates; South geodetic measurements. -
Tectonic Setting Seismic Hazard Epicentral Region
U.S. DEPARTMENT OF THE INTERIOR EARTHQUAKE SUMMARY MAP U.S. GEOLOGICAL SURVEY Prepared in cooperation with the M8.0 Samoa Islands Region Earthquake of 29 September 2009 Global Seismographic Network M a r s Epicentral Region h a M A R S H A L L l I S TL A eN DcS tonic Setting l 174° 176° 178° 180° 178° 176° 174° 172° 170° 168° 166° C e n t r a l 160° 170° I 180° 170° 160° 150° s l a P a c i f i c K M e l a n e s i a n n L NORTH a d B a s i n i p B a s i n s n Chris tmas Island i H e BISMARCK n C g I R N s PLATE a l B R I TA i G E I s E W N T R 0° m a 0° N E R N e i n P A C I F I C 10° 10° C a H l T d b r s a e r C P L A T E n t E g I D n e i s A o Z l M e a t u r SOUTH n R r a c d E K I R I B A T I s F s K g o BISMARCK l a p a PLATE P A C I F I C G a Solomon Islands P L A T E S O L O M O N T U V A L U V I T Y I S L A N D S A Z TR FUTUNA PLATE 12° 12° S EN O U C BALMORAL C 10° T H H o 10° S O REEF o WOODLARK L Santa k O M Cruz PLATE I PLATE O N T RE N C H Sam sl Is lands oa I NIUAFO'OU a N s n C o r a l S e a S A M O A lan d SOLOMON SEA O ds PLATE s T U B a s i n R A M E R I C A N (N A PLATE T M H . -
Mylonitization Temperatures and Geothermal Gradient from Ti-In
Solid Earth Discuss., https://doi.org/10.5194/se-2018-12 Manuscript under review for journal Solid Earth Discussion started: 7 March 2018 c Author(s) 2018. CC BY 4.0 License. Constraints on Alpine Fault (New Zealand) Mylonitization Temperatures and Geothermal Gradient from Ti-in-quartz Thermobarometry Steven Kidder1, Virginia Toy2, Dave Prior2, Tim Little3, Colin MacRae 4 5 1Department of Earth and Atmospheric Science, City College New York, New York, 10031, USA 2Department of Geology, University of Otago, Dunedin, New Zealand 3School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand 4CSIRO Mineral Resources, Microbeam Laboratory, Private Bag 10, 3169 Clayton South, Victoria, Australia Correspondence to: Steven B. Kidder ([email protected]) 10 Abstract. We constrain the thermal state of the central Alpine Fault using approximately 750 Ti-in-quartz SIMS analyses from a suite of variably deformed mylonites. Ti-in-quartz concentrations span more than an order of magnitude from 0.24 to ~5 ppm, suggesting recrystallization of quartz over a 300° range in temperature. Most Ti-in-quartz concentrations in mylonites, protomylonites, and the Alpine Schist protolith are between 2 and 4 ppm and do not vary as a function of grain size or bulk rock composition. Analyses of 30 large, inferred-remnant quartz grains (>250 µm), as well as late, cross-cutting, chlorite-bearing 15 quartz veins also reveal restricted Ti concentrations of 2-4 ppm. These results indicate that the vast majority of Alpine Fault mylonitization occurred within a restricted zone of pressure-temperature conditions where 2-4 ppm Ti-in-quartz concentrations are stable. -
Geophysical Structure of the Southern Alps Orogen, South Island, New Zealand
Regional Geophysics chapter 15/04/2007 1 GEOPHYSICAL STRUCTURE OF THE SOUTHERN ALPS OROGEN, SOUTH ISLAND, NEW ZEALAND. F J Davey1, D Eberhart-Phillips2, M D Kohler3, S Bannister1, G Caldwell1, S Henrys1, M Scherwath4, T Stern5, and H van Avendonk6 1GNS Science, Gracefield, Lower Hutt, New Zealand, [email protected] 2GNS Science, Dunedin, New Zealand 3Center for Embedded Networked Sensing, University of California, Los Angeles, California, USA 4Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany 5School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand 6Institute of Geophysics, University of Texas, Austin, Texas, USA ABSTRACT The central part of the South Island of New Zealand is a product of the transpressive continental collision of the Pacific and Australian plates during the past 5 million years, prior to which the plate boundary was largely transcurrent for over 10 My. Subduction occurs at the north (west dipping) and south (east dipping) of South Island. The deformation is largely accommodated by the ramping up of the Pacific plate over the Australian plate and near-symmetric mantle shortening. The initial asymmetric crustal deformation may be the result of an initial difference in lithospheric strength or an inherited suture resulting from earlier plate motions. Delamination of the Pacific plate occurs resulting in the uplift and exposure of mid- crustal rocks at the plate boundary fault (Alpine fault) to form a foreland mountain chain. In addition, an asymmetric crustal root (additional 8 - 17 km) is formed, with an underlying mantle downwarp. The crustal root, which thickens southwards, comprises the delaminated lower crust and a thickened overlying middle crust. -
Constraints on Alpine Fault (New Zealand) Mylonitization Temperatures and the Geothermal Gradient from Ti-In-Quartz Thermobarometry
Solid Earth, 9, 1123–1139, 2018 https://doi.org/10.5194/se-9-1123-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Constraints on Alpine Fault (New Zealand) mylonitization temperatures and the geothermal gradient from Ti-in-quartz thermobarometry Steven B. Kidder1, Virginia G. Toy2, David J. Prior2, Timothy A. Little3, Ashfaq Khan1, and Colin MacRae4 1Department of Earth and Atmospheric Science, City College New York, New York, 10031, USA 2Department of Geology, University of Otago, Dunedin, New Zealand 3School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand 4CSIRO Mineral Resources, Microbeam Laboratory, Private Bag 10, 3169 Clayton South, Victoria, Australia Correspondence: Steven B. Kidder ([email protected]) Received: 22 February 2018 – Discussion started: 7 March 2018 Revised: 28 August 2018 – Accepted: 3 September 2018 – Published: 25 September 2018 Abstract. We constrain the thermal state of the central when more fault-proximal parts of the fault were deforming Alpine Fault using approximately 750 Ti-in-quartz sec- exclusively by brittle processes. ondary ion mass spectrometer (SIMS) analyses from a suite of variably deformed mylonites. Ti-in-quartz concentrations span more than 1 order of magnitude from 0.24 to ∼ 5 ppm, suggesting recrystallization of quartz over a 300 ◦C range in 1 Introduction temperature. Most Ti-in-quartz concentrations in mylonites, protomylonites, and the Alpine Schist protolith are between The Alpine Fault is the major structure of the Pacific– 2 and 4 ppm and do not vary as a function of grain size Australian plate boundary through New Zealand’s South Is- or bulk rock composition. -
GEOTECHNICAL RECONNAISSANCE of the 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011
GEOTECHNICAL RECONNAISSANCE OF THE 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011 (photograph by Gillian Needham) EDITORS Misko Cubrinovski – NZ Lead (University of Canterbury, Christchurch, New Zealand) Russell A. Green – US Lead (Virginia Tech, Blacksburg, VA, USA) Liam Wotherspoon (University of Auckland, Auckland, New Zealand) CONTRIBUTING AUTHORS (alphabetical order) John Allen – (TRI/Environmental, Inc., Austin, TX, USA) Brendon Bradley – (University of Canterbury, Christchurch, New Zealand) Aaron Bradshaw – (University of Rhode Island, Kingston, RI, USA) Jonathan Bray – (UC Berkeley, Berkeley, CA, USA) Misko Cubrinovski – (University of Canterbury, Christchurch, New Zealand) Greg DePascale – (Fugro/WLA, Christchurch, New Zealand) Russell A. Green – (Virginia Tech, Blacksburg, VA, USA) Rolando Orense – (University of Auckland, Auckland, New Zealand) Thomas O’Rourke – (Cornell University, Ithaca, NY, USA) Michael Pender – (University of Auckland, Auckland, New Zealand) Glenn Rix – (Georgia Tech, Atlanta, GA, USA) Donald Wells – (AMEC Geomatrix, Oakland, CA, USA) Clint Wood – (University of Arkansas, Fayetteville, AR, USA) Liam Wotherspoon – (University of Auckland, Auckland, New Zealand) OTHER CONTRIBUTORS (alphabetical order) Brady Cox – (University of Arkansas, Fayetteville, AR, USA) Duncan Henderson – (University of Canterbury, Christchurch, New Zealand) Lucas Hogan – (University of Auckland, Auckland, New Zealand) Patrick Kailey – (University of Canterbury, Christchurch, New Zealand) Sam Lasley – (Virginia Tech, Blacksburg, VA, USA) Kelly Robinson – (University of Canterbury, Christchurch, New Zealand) Merrick Taylor – (University of Canterbury, Christchurch, New Zealand) Anna Winkley – (University of Canterbury, Christchurch, New Zealand) Josh Zupan – (University of California at Berkeley, Berkeley, CA, USA) TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 SEISMOLOGICAL ASPECTS 3.0 GEOLOGICAL ASPECTS 4.0 LIQUEFACTION AND LATERAL SPREADING 5.0 IMPROVED GROUND 6.0 STOPBANKS 7.0 BRIDGES 8.0 LIFELINES 9.0 LANDSLIDES AND ROCKFALLS 1. -
2011 PPEM Newsletter
PPEM Physical Properties of Earth Materials sites.agu.org/ppem/ Annual Newsletter November 2011 A Note From The Chair the National Academy of Sciences, ~ Judith Chester ~ and was recipient of the Walter H. Texas A&M University Bucher Medal of the American PPEM Chair Geophysical Union (1970) and the PPEM Dinner his year’s Fall AGU Meet- Arthur L. Day Medal of the Geo- ing will host several spe- logical Society of America (1973). The annual PPEM dinner will cial events important to the Join your colleagues at AGU and take place on Monday, Decem- T ber 5th. at Henry’s Hunan Res- PPEM communi- celebrate the life ty. The meeting of David Griggs taurant. Festivities will begin will open Sun- and his influen- with a cash bar at 6:00, followed day, December tial contributions by dinner at 7:30. The banquet 4th with a work- to solid-earth style menu will feature a variety shop organized geophysics. of meat, chicken, seafood and by Ivan Getting Recently, we vegetarian dishes showcasing and Terry Tullis launched a new the 3 cuisines of China’s Hu- on Technology PPEM website nan region. The restaurant is a for Research at that can be found short walk from the Moscone Elevated Pres- at sites.agu.org/ Center, at 110 Natoma Street, sure (see an- ppem/. The site San Francisco, CA 94105 in an nouncement on is under con- alley west of 2nd between How- page 6). In ad- struction so if ard and Mission. See page 8 for dition, AGU you have sugges- reservation information. -
Bedrock Geology of DFDP-2B, Central Alpine Fault, New Zealand
Central Washington University ScholarWorks@CWU All Faculty Scholarship for the College of the Sciences College of the Sciences 10-17-2017 Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand Virginia Gail Toy Angela Halfpenny Follow this and additional works at: https://digitalcommons.cwu.edu/cotsfac Part of the Geology Commons, and the Tectonics and Structure Commons 1 Bedrock Geology of DFDP-2B, Central Alpine 2 Fault, New Zealand. 3 Authors 4 Virginia Toy: Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New 5 Zealand, [email protected], +64 479 7519. 6 Rupert Sutherland: School of Geography, Environment, and Earth Sciences, Victoria University of 7 Wellington, PO Box 600, Wellington 6140, New Zealand, [email protected], +64 4 463 8 6422. 9 John Townend: School of Geography, Environment, and Earth Sciences, Victoria University of 10 Wellington, PO Box 600, Wellington 6140, New Zealand, [email protected], +64 4 463 5411. 11 Michael J. Allen: Department of Earth and Ocean Sciences, University of Liverpool, 4 Brownlow 12 Street, Liverpool, L69 3GP, UK; [email protected]; +44 79 585 342 68. 13 Leeza Becroft: Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New 14 Zealand, [email protected]; +64 3 479 7519. 15 Austin Boles: Department of Earth and Environmental Sciences, University of Michigan, 1100 N 14 16 University Ave., Ann Arbor, MI, 48109; [email protected]; +1.801.995.3197. 17 Carolyn Boulton: School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, 18 Liverpool L69 3GP, UK; School of Geography, Environment, and Earth Sciences, Victoria 19 University of Wellington, PO Box 600, Wellington 6140, New Zealand; [email protected]; 20 +64 21 111 1800. -
Marlborough Civil Defence Emergency Management Plan
Marlborough Civil Defence Emergency Management Plan 2018-2023 Seddon Marlborough Civil Defence Emergency Management Group Improving the resilience of the District to all foreseeable emergency events through the active engagement of communities and the effective integration of support agencies. Contents Glossary of Terms ...................................................................................................1 1. Introduction ...................................................................................................4 1.1 Setting the Scene......................................................................................................... 4 1.2 The Marlborough Context ............................................................................................ 5 1.3 National Context .......................................................................................................... 9 1.4 Marlborough CDEM Vision and Goals ....................................................................... 10 2. Marlborough’s Risk Profile ........................................................................ 11 2.1 Introduction ................................................................................................................ 11 2.2 Detailed Risk Analysis ............................................................................................... 12 2.3 Marlborough CDEM Group Environment ................................................................... 18 3. Reducing Marlborough’s Hazard Risks ................................................... -
Bedrock Geology of DFDP-2B, Central Alpine Fault, New Zealand
1 Bedrock Geology of DFDP-2B, Central Alpine 2 Fault, New Zealand. 3 Authors 4 Virginia Toy: Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New 5 Zealand, [email protected], +64 479 7519. 6 Rupert Sutherland: School of Geography, Environment, and Earth Sciences, Victoria University of 7 Wellington, PO Box 600, Wellington 6140, New Zealand, [email protected], +64 4 463 8 6422. 9 John Townend: School of Geography, Environment, and Earth Sciences, Victoria University of 10 Wellington, PO Box 600, Wellington 6140, New Zealand, [email protected], +64 4 463 5411. 11 Michael J. Allen: Department of Earth and Ocean Sciences, University of Liverpool, 4 Brownlow 12 Street, Liverpool, L69 3GP, UK; [email protected]; +44 79 585 342 68. 13 Leeza Becroft: Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New 14 Zealand, [email protected]; +64 3 479 7519. 15 Austin Boles: Department of Earth and Environmental Sciences, University of Michigan, 1100 N 14 16 University Ave., Ann Arbor, MI, 48109; [email protected]; +1.801.995.3197. 17 Carolyn Boulton: School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, 18 Liverpool L69 3GP, UK; School of Geography, Environment, and Earth Sciences, Victoria 19 University of Wellington, PO Box 600, Wellington 6140, New Zealand; [email protected]; 20 +64 21 111 1800. 21 Brett Carpenter: School of Geology & Geophysics, University of Oklahoma, Norman, OK, USA. 22 [email protected]; +1 405 325 3372. 23 Alan Cooper: Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New 24 Zealand; [email protected]; +64 3 479 7519. -
Canterbury), New Zealand Earthquake of September 4, 2010
EERI Special Earthquake Report — November 2010 Learning from Earthquakes The Mw 7.1 Darfield (Canterbury), New Zealand Earthquake of September 4, 2010 From September 8th to 20th, 2010, at 4:36 am, as well as to the moder- magnitude at 7.1 with a predomi- a team organized by the Earth- ate level of shaking in the most popu- nantly strike-slip focal mechanism quake Engineering Research Insti- lated areas of the Canterbury region. having a right-lateral focal plane tute (EERI) and the Pacific Earth- New Zealand also benefits from a striking east-west. However, more quake Engineering Research modern structural code and rigorous detailed and ongoing analysis has (PEER) Center investigated the code enforcement. Regional planning revealed a strong reverse faulting effects of the Darfield earthquake. had been undertaken to reduce criti- component to the mainshock. The team was led by Mary Comerio, cal infrastructure and lifelines vulner- The surface rupture spans nearly UC Berkeley, and included Lucy ability to natural hazards about 15 30 km and consists of fault scarps Arendt, University of Wisconsin, years ago (Centre for Advanced Engi- that locally exceed 4 m of right- Green Bay; Michel Bruneau, Uni- neering, 1997), with improvements in lateral and about 1 m of vertical versity of Buffalo, New York; local government and utilities pre- dislocation of the ground surface. Peter Dusicka, Portland State Uni- paredness, as well as the retrofitting In most places along and near the versity; Henri Gavin, Duke Univer- of bridges and other lifeline facilities. fault, the ground surface on the sity; Charles Roeder, University of Christchurch is the largest city on the south side has been raised relative Washington; and Fred Turner, Cali- South Island of New Zealand, and to the north side.