Taq DNA Polymerase

Total Page:16

File Type:pdf, Size:1020Kb

Taq DNA Polymerase Polymerase Chain Reaction (PCR) • PCR is a technique which is used to amplify the number of copies of a specific region of DNA, in order to produce enough DNA to be adequately tested. • As a result, it now becomes possible to analyze and characterize DNA fragments found in minute quantities in different samples. Polymerase Chain Reaction (PCR) • PCR carry out for – DNA cloning – sequencing, – DNA-based phylogeny, or – functional analysis of genes; – the diagnosis of diseases; – genetic fingerprints and – the detection and diagnosis of infectious diseases. PROCEDURE ….. PCR Reagents • Template DNA (e.g., plasmid DNA, genomic DNA). • Forward and reverse PCR primers. • MgCl2 (25 mM). • dNTPs (a mixture of 2.5 mM dATP, dCTP, dGTP, and dTTP). • PCR buffer: 500 mM KCl, 100 mM Tris-HCl, pH 8.3, 25°C. PCR Reagents • Thermal stable DNA polymerase – DNA polymerases without 3′ → 5′ proofreading activity • Taq DNA polymerase • Tth DNA polymerase • Tfl DNA polymerase – DNA polymerases with 3′ → 5′ proofreading activity: • Pwo DNA polymerase • Pfu DNA polymerase • Tli DNA polymerase • Vent DNA polymerase PCR Reagents • Optional: PCR additives /cosolvents (optional; e.g., • betaine, glycerol, DMSO, formamide, bovine serum albumin, ammonium sulfate, polyethylene glycol, gelatin, Tween-20, Triton X-100, β-mercaptoethanol, or tetramethylammonium chloride). Polymerase Chain Reaction (PCR) • Initialization step: 94–96 °C (or 98 °C if extremely thermostable polymerases are used), for 1–9 minutes. – the complete separation of the DNA strands and unfolding secondary structures – This stage also required for DNA polymerases that require heat activation by hot-start PCR. Polymerase Chain Reaction (PCR) • Denaturation step: 94–98 °C for 20–30 seconds. It causes DNA melting of the DNA template by disrupting the hydrogen bonds between complementary bases, yielding single-stranded DNA molecules. – it is appropriate to use a higher denaturation temperature and a longer incubation time for some templates, such as those templates with high GC content, to achieve complete denaturation for more complete denaturation of the DNA template • Although a higher temperature and a longer incubation time reduce lifetime of enzyme. Polymerase Chain Reaction (PCR) • Annealing step: 50–65 °C for 20–40 seconds allowing annealing of the primers to the single-stranded DNA template. Typically the annealing temperature is about 3–5 °C below the Tm of the primers used. • Extension/elongation step (72 °C): The temperature at this step depends on the DNA polymerase used; – Taq polymerase has its optimum activity temperature at 75–80 °C, and commonly a temperature of 72 °C is used with this enzyme. Polymerase Chain Reaction (PCR) • In elongation step, – the DNA polymerase synthesizes a new DNA strand complementary to the DNA template strand by adding dNTPs that are complementary to the template in 5' to 3' direction, – banding the 5'-phosphate group of the dNTPs with the 3'-hydroxyl group at the end of the nascent (extending) DNA strand (Phosphodiester band). – Primer extension time depends on the length and concentration of the target sequence, as well as the extension temperature. Extending the Chain DNA elongation DNA elongation DNA polymerases synthesize DNA using 5’dNTP substrates, a DNA template, and elongate the chain at the 3’ end: Base1 Base 2 Base1 Base2 + OH PPP 3’ OH PPP OH PPP OPO 5’ B1 B2 B3 B4 B5 B6 B7 … etc… PPP OH Polymerase Chain Reaction (PCR) • In elongation step, – Taq DNA polymerase extends at a rate of 0.25 nucleotides per second at 22°C, 1.5 nucleotides per second at 37°C, 24 nucleotides per second at 55°C, greater than 60 nucleotides per second at 70°C, and 150 nucleotides per second at 75 to 80°C. – at 72°C, Taq DNA polymerase is expected to extend at the rate of greater than 3500 nucleotides per minute. – Thus, in common, an extension time of 1 min per kilobase is more than sufficient to generate the expected PCR product. Polymerase Chain Reaction Polymerase Chain Reaction (PCR) • Final elongation: – This single step is occasionally performed at a temperature of 70–74 °C for 5–15 minutes after the last PCR cycle to ensure that any remaining single-stranded DNA is fully extended • (A tail for cloning). Polymerase Chain Reaction (PCR) • Two-step cycling programs are generally applied when a high annealing temperature is used, such as 65 to 70°C. • Because a higher annealing temperature improves amplification specificity, it is argued by some investigators that better PCR results may be obtained using a two-step cycling program . Polymerase Chain Reaction (PCR) • In long PCR, – Two-step cycling programs are more frequently used than three-step cycling programs. – For example, denaturation at 92 to 95°C for 10 to 30 s, followed by annealing and extension at 65 to 68°C for 1 min per kilobase will increase the probability of obtaining the desired product. Melting PCR 100 94 oC 50 Temperature 0 T i m e 3’ 5’ 5’ 3’ Melting PCR 100 94 oC 50 Temperature 0 T i m e 3’ 5’ Heat 5’ 3’ Melting PCR 100 Melting 94 oC 94 oC Annealing Extension o Primers 72 C 50 50 oC Temperature 0 T i m e 3’ 5’ 5’ 5’ 5’ 3’ Temperature control in a PCR thermocycler Temperature 0C 94 0C - denaturation 50 – 70 0C - primer annealing 72 0C - primer extension 94 0C - denaturation Melting PCR 30x 100 Melting 94 oC 94 oC Annealing Extension o Primers 72 C 50 50 oC Temperature 0 T i m e 3’ 5’ Heat 5’ 5’ Heat 5’ 5’ 3’ Melting PCR 30x 100 Melting 94 oC 94 oC Annealing Extension o Primers 72 C 50 50 oC Temperature 0 T i m e 3’ 5’ 5’ 5’ 5’ 5’ 5’ 5’ 5’ 3’ Melting PCR 30x 100 Melting 94 oC 94 oC Annealing Extension o Primers 72 C 50 50 oC Temperature 0 3’ 5’ 5’ T i m e 5’ 5’ 5’ 3’ Heat 5’ 5’ Heat 5’ Melting PCR 30x 100 Melting 94 oC 94 oC Annealing Extension o Primers 72 C 50 50 oC Temperature 0 3’ 5’ 5’ T i m e 5’ 5’ 5’ 5’ 3’ 5’ 5’ 5’ 5’ 5’ 5’ PCR Melting 30x 100 Melting 94 oC 94 oC Annealing Extension o Primers 72 C 50 50 oC Temperature 0 3’ 5’ 5’ T i m e 5’ 5’ 5’ 5’ 3’ 5’ Fragments of 5’ defined length 5’ 5’ 5’ 5’ PCR Round 1 target DNA 5' 3' Double-stranded DNA 3' 5' 5' 3' Denaturation 3' 5' 5' 3' Primer annealing 3' 5' 5' 5' 3' 3' 5' 5' 3' 3' Extension 5' 5' 3' 3' 3' 3' 5' 5' repeat PCR cycles DNA polymerase always adds nucleotides to the 3’ end of the primer 5' 3' 5' 3' PCR Round 2 5' 3' 3' 5' After the second round of 5' 3' 3' 5' PCR, the number of long denaturation strands increases 5' 3' arithmetically and the 3' 5' number of short strands increases exponentially 5' 3' (the number of chromosomal strands is 3' 5' primer annealing 3' always the same). 5' 3' 5' 5' 3' 5' 3' 3' 5' 5' 3' extension Short strand 3' 5' 5' 3' 3' 5' Long strand Chromosomal strand • The confirmation of PCR products 1. Correct product size (expected-size product) 2. Sequencing the products. 3. Use a gene probe to confirm the product.s 4. Use nested PCR PCR • PCR amplifications can be grouped into three different categories: – standard PCR, – long PCR, and – multiplex PCR. • Standard PCR – amplification of a single DNA sequence that is less than 5 kb (my experience, 2kb) in length and – applications, such as sequencing, cloning, mutation detection, etc. PCR Optimisation • Long PCR is used for – the amplification of a single sequence that is longer than 5 kb (2kb) and up to 40 kb in length. – Its applications include • long-range sequencing; • amplification of complete genes; • molecular cloning; • assembly and production of larger recombinant constructions for PCR-based mutagenesis. Long PCR • Programming an increase in extension time automatically in later cycles may also improve the yields of the amplification. – Forexample: 3M*10s for extension time • increasing the extension time in each of the later PCR cycles could increase the likelihood of synthesizing long PCR products. PCR Optimisation • Multiplex PCR, – is used for the amplification of multiple sequences that are less than 5 kb in length. – Its applications include • pathogen identification (detecting in quarantine); • template quantitation; • genetic disease diagnosis; • population genetics. Multiplex-PCR • targeting multiple genes at once with multiple primer sets within a single PCR mixture which produce amplicons of varying sizes that are specific to different DNA sequences. • Annealing temperatures for each of the primer sets must be optimized to work correctly within a single reaction (very close Tm) • amplicon length should be different enough to form distinct bands when visualized by gel electrophoresis. Multiplex PCR • Use of multiple sets of primers • to detect more than one organism or • to detect multiple genes in one organism. E. Coli Salmonella sp. genome genome or Multiplex PCR • Therefore, Multiplex PCR enabling simultaneous amplification of some genes in one reaction by using more than one pair of primers. PCR Optimization • Optimization of PCR depend on: – (1) Quality and concentration of DNA template; – (2) Design and concentration of primers; – (3) Concentration of magnesium ions; – (4) Concentration of the four deoxynucleotides (dNTPs); – (5) PCR buffer systems; – (6) Selection and concentration of DNA polymerase; – (7) PCR thermal cycling conditions; – (8) Addition and concentrations of PCR additives (enhancements) – (9) Use of the “hot start” technique. PCR Optimization- DNA template • The quality and concentration of DNA templates can directly affect the outcome of PCR amplifications.
Recommended publications
  • Expression of Telomerase Activity, Human Telomerase RNA, and Telomerase Reverse Transcriptase in Gastric Adenocarcinomas Jinyoung Yoo, M.D., Ph.D., Sonya Y
    Expression of Telomerase Activity, Human Telomerase RNA, and Telomerase Reverse Transcriptase in Gastric Adenocarcinomas Jinyoung Yoo, M.D., Ph.D., Sonya Y. Park, Seok Jin Kang, M.D., Ph.D., Byung Kee Kim, M.D., Ph.D., Sang In Shim, M.D., Ph.D., Chang Suk Kang, M.D., Ph.D. Department of Pathology, St. Vincent’s Hospital, Catholic University, Suwon, South Korea esis of gastric cancer and may reflect, along with Telomerase is an RNA-dependent DNA polymerase enhanced hTR, the malignant potential of the tu- that synthesizes TTAGGG telomeric DNA onto chro- mor. It is noteworthy that methacarn-fixed tissue mosome ends to compensate for sequence loss dur- cannot as yet substitute for the frozen section in the ing DNA replication. It has been detected in 85–90% TRAP assay. of all primary human cancers, implicating that the telomerase seems to be reactivated in tumors and KEY WORDS: hTR, Stomach cancer, Telomerase, that such activity may play a role in the tumorigenic TERT. process. The purpose of this study was to evaluate Mod Pathol 2003;16(7):700–707 telomerase activity, human telomerase RNA (hTR), and telomerase reverse transcriptase (TERT) in Recent studies of stomach cancer have been di- stomach cancer and to determine their potential rected toward gaining a better understanding of relationships to clinicopathologic parameters. Fro- tumor biology. Molecular analysis has suggested zen and corresponding methacarn-fixed paraffin- that alterations in the structures and functions of embedded tissue samples were obtained from 51 oncogenes and tumor suppressor genes, genetic patients with gastric adenocarcinoma and analyzed instability, as well as the acquisition of cell immor- for telomerase activity by using a TRAPeze ELISA tality may be of relevance in the pathogenesis of kit.
    [Show full text]
  • Llll|Llll Technical Tips
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press llll|llll Technical Tips The reverse transcriptase-polymerase reverse transcriptase, the multiple Single-step chain reaction (RT-PCR) provides an ef- rounds of amplification catalyzed by Elimination of fective method for detecting very small DNA polymerase are equally effective amounts of a specific mRNA in a small at amplifying either the cDNA or con- Contaminating sample of total RNA.O,2) Unfortunate- taminating genomic DNA. Even mi- DNA Prior to ly, for purposes of detecting RNA by nuscule amounts of contaminating this procedure, after the initial step of DNA (<1%) can produce a false- Reverse converting RNA into cDNA using positive amplification signal in an RT- Transcriptase PCR Donald D. Dilworth and John R. McCarrey Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78228 FIGURE 1 Effects of pretreatment with nuclease on production of amplification signals by RT-PCR. Five hundred nanograms of total RNA from mouse liver supplemented with 0, 1, 5, or 10% genomic DNA was subjected to RT-PCR using primers determined from the mouse 13- actin cDNA sequence, (14) and reverse transcriptase and AmpliTaq DNA polymerase (Perkin- Elmer Cetus). Primers used were: (upstream) 5'-GCGGACTGTTACTGAGCTGCGT-3' and (downstream) 5 ' -GAAGCAATGCTGTCACCTTCCC-3 ', which delineated a 453-bp amplifica- tion product from either a cDNA or genomic DNA template, since this sequence apparently does not span an intron in genomic DNA. In each case a comparison of amplification with (+) or without (-) the addition of reverse transcriptase is shown. (A) RT-PCR with no prior nuclease treatment.
    [Show full text]
  • Expand Reverse Transcriptase from Escherichia Coli: AP401 (K) Deoxynucleoside-Triphosphate:DNA Deoxynucleotidyl-Transferase (RNA Directed) E.C.2.7.7.49
    For life science research only. Not for use in diagnostic procedures. Expand Reverse Transcriptase from Escherichia coli: AP401 (k) Deoxynucleoside-triphosphate:DNA deoxynucleotidyl-transferase (RNA directed) E.C.2.7.7.49 Cat. No. 11 785 826 001 1 000 U y Version 13 Cat. No. 11 785 834 001 5 000 U Content version: March 2020 Store at Ϫ15 to Ϫ25°C Product overview General handling instructions Pack content RNA preparation For high quality eucaryotic mRNA preparations it is Vial Content necessary to minimize the activity of RNases liberated Expand Reverse • 1000 U (Cat. No. 11 785 826 001) during cell lysis by using inhibitors of RNases or meth- ods that disrupt cells and inactivate RNases simultane- Transcriptase • 5000 U (Cat. No. 11 785 834 001) ously. A good overview of the methods is given in (4) as Expand Reverse cDNA synthesis buffer (first-strand) well as in (5). Suitable reagents for the isolation of total Transcriptase 250 mM Tris-HCl, 200 mM KCl, 2) RNA/or mRNA are the mRNA Isolation Kit and TriPure Buffer, 5 × conc. 25 mM MgCl2, 2.5% Tween 20 Isolation Reagent. (v/v), pH 8.3 (25°C). Consequently, it is also important to avoid the acciden- Dithiothreitol 100 mM tal introduction of trace amounts of RNases from other (DTT) solution potential sources in the laboratory, like glassware, plasticware, contaminating solutions and contamina- Storage and The undiluted enzyme is stable at –15 to –25°C through tion of the investigators hands. stability the expiration date printed on the label. The product is shipped on dry ice.
    [Show full text]
  • Optimization of the TRAP Assay to Evaluate Specificity of Telomerase Inhibitors
    Laboratory Investigation (2005) 85, 1565–1569 & 2005 USCAP, Inc All rights reserved 0023-6837/05 $30.00 www.laboratoryinvestigation.org Optimization of the TRAP assay to evaluate specificity of telomerase inhibitors Kamilla Piotrowska1,*, Elke Kleideiter1,*, Thomas E Mu¨ rdter1, Sebastian Taetz2, Christiane Baldes2, Ulrich Schaefer2, Claus-Michael Lehr2 and Ulrich Klotz1 1Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and 2Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbru¨cken, Germany Telomerase inhibition represents a promising approach to anticancer treatment. In order to clarify the therapeutic potential of telomerase inhibitors we examined different substances (small molecule compounds BIBR1532 and BRACO19, as well as hTR antisense oligonucleotides 20-O-methyl RNA and PNA) in A-549, MCF-7, and Calu-3 cell lines in a cell-free TRAP assay. We demonstrated that each of the tested agents inhibited telomerase in all used cell lines and that the antisense oligonucleotides represent the most potent inhibitors. Interestingly, upon evaluating the specificity of telomerase inhibitors we found out that not all agents acted specifically against telomerase. We observed that BRACO19 and PNA had an inhibitory effect also on PCR s amplification of the TSR8 oligonucleotide which is provided in the TRAPEZE kit as a PCR control. By modifying the experimental protocol and using a different reverse primer we were able to enhance PNA selectivity, although the PCR inhibition of the TSR8 control template by BRACO19 could not be prevented. We propose an explanation for the lack of target specificity and suggest caution when testing putative telomerase inhibitors, as it appears that some of those substances may not affect specifically telomerase or telomeric G-rich sequences and thus can lead to the misinterpretation of experimental results.
    [Show full text]
  • Datasheet for Longamp® Taq DNA Polymerase (M0323; Lot 0101212)
    Unit Definition: One unit is defined as the amount 3. Mg++ and additives: 25 µl 50 µl FInal ® ++ LongAmp Taq of enzyme that will incorporate 10 nmol of dNTP COMPONENT REacTION REacTION CONCENTRATION Mg concentration of 1.5–2.0 mM is optimal into acid insoluble material in 30 minutes at 75°C. 5X LongAmp Taq for most PCR products generated with ++ DNA Polymerase Reaction Buffer 5 µl 10 µl 1X LongAmp Taq DNA Polymerase. The final Mg ™ Unit Assay Conditions: 1X ThermoPol Reaction 10 mM dNTPs 0.75 µl 1.5 µl 300 µM concentration in 1X LongAmp Taq Reaction Buffer, 200 µM dNTPs including [3H]-dTTP and Buffer is 2 mM. This supports satisfactory 1-800-632-7799 10 µM Forward Primer 1 µl 2 µl 0.4 µM (0.05–1 µM) [email protected] 200 µg/ml activated Calf Thymus DNA. amplification of most amplicons. However, www.neb.com 10 µM Reverse Primer 1 µl 2 µl 0.4 µM (0.05–1 µM) Mg++ can be further optimized in 0.5 or 1.0 M0323S 010121214121 Heat Inactivation: No LongAmp Taq 5 units/ mM increments using MgSO . DNA Polymerase 1 µl 2 µl 50 µl PCR 4 Quality Control Assays Amplification of some difficult targets, like M0323S Template DNA variable variable <1,000 ng GC-rich sequences, may be improved Long Amplicon PCR: LongAmp Taq DNA Poly- Nuclease-Free Water to 25 µl to 50 µl 500 units 2,500 U/ml Lot: 0101212 merase is tested for the ability to amplify a 30 kb with additives, such as DMSO (4) or amplicon from lambda DNA and a 30 kb amplicon Notes: Gently mix the reaction.
    [Show full text]
  • For Improvement of Nucleic Acid Synthesis and Ampli
    Europäisches Patentamt *EP001088891B1* (19) European Patent Office Office européen des brevets (11) EP 1 088 891 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 15/55, C12N 15/54, of the grant of the patent: C12N 9/22, C12N 9/12, 12.01.2005 Bulletin 2005/02 C12Q 1/68, C12P 19/34 (21) Application number: 99119268.3 (22) Date of filing: 28.09.1999 (54) Thermostable enzyme promoting the fidelity of thermostable DNA polymerases - for improvement of nucleic acid synthesis and amplification in vitro Thermostabiles Enzym welches die Genauigkeit thermostabiler DNA Polymerasen erhöht - zur Verbesserung der Nucleinsäuresynthese und in vitro Amplifikation Enzyme thermostable pour augmenter la fidélité de polymèrase d’ADN thermostable - pour l’amélioration de la synthèse des acides nucléiques et d’amplification in vitro (84) Designated Contracting States: • KLENK H-P ET AL: "The complete genome AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU sequence of the hyperthermophilic, MC NL PT SE sulphate-reducing archaeon Archaeoglobus fulgidus" NATURE,GB,MACMILLAN JOURNALS (43) Date of publication of application: LTD. LONDON, vol. 390, 27 November 1997 04.04.2001 Bulletin 2001/14 (1997-11-27), pages 364-370, XP002091622 ISSN: 0028-0836 (73) Proprietor: Roche Diagnostics GmbH • KALUZ S ET AL: "DIRECTIONAL CLONING OF 68298 Mannheim (DE) PCR PRODUCTS USING EXONUCLEASE III" NUCLEIC ACIDS RESEARCH,GB,OXFORD (72) Inventors: UNIVERSITY PRESS, SURREY, vol. 20, no. 16, 1 • Dr.Waltraud Ankenbauer January 1992 (1992-01-01), pages 4369-4370, 82377 Penzberg (DE) XP002072726 ISSN: 0305-1048 • Franck Laue • BOOTH P M ET AL: "ASSEMBLY AND CLONING 82396 Paehl-Fischen (DE) OF CODING SEQUENCES FOR NEUROTROPHIC • Dr.Harald Sobek FACTORS DIRECTLY FROM GENOMIC DNA 82377 Penzberg (DE) USING POLYMERASE CHAIN REACTION AND • Michael Greif URACIL DNA GLYCOSYLASE" 83661 Lenggries (DE) GENE,NL,ELSEVIER BIOMEDICAL PRESS.
    [Show full text]
  • Biotechnology Explorer™
    Biotechnology Explorer™ GAPDH PCR Module Instruction Manual Catalog #166-5010EDU explorer.bio-rad.com This kit is shipped at 4°C. Open immediately upon arrival and store reagents at –20°C within 2 weeks. Duplication of any part of this document permitted for classroom use only. Please visit explorer.bio-rad.com to access our selection of language translations for Biotechnology Explorer kit curricula. For technical support, call your local Bio-Rad office or, in the U.S., call 1-800-424-6723 Dear Educator: Amplification as the path to visualization of DNA Molecular biologists are faced with the classic needle in a haystack problem. Often we must find a few copies of a piece of DNA that code for a given gene in the haystack of DNA comprising the entire genome. Even if there are a thousand copies of the same piece of DNA it is often still difficult to locate them. However by selectively amplifying only that specific piece of DNA we can separate it from the rest of the DNA and visualize it. Once we can visualize the DNA, we can use the tools of molecular biology to open the whole vista of genetic engineering. We can work with the DNA to make discoveries in science, agriculture, and medicine. The method used to amplify the DNA is the polymerase chain reaction (PCR). PCR is capable of repeatedly doubling the amount of specific DNA. After many PCR cycles a million-fold or billion-fold times as much DNA is generated. Because of the increasing use of PCR in science it is important to provide students with an understanding of the basic principles and applications of PCR.
    [Show full text]
  • In Vitro and in Vivo Models Analyzing Von Hippel-Lindau Disease-Specific Mutations
    [CANCER RESEARCH 64, 8595–8603, December 1, 2004] In vitro and In vivo Models Analyzing von Hippel-Lindau Disease-Specific Mutations W. Kimryn Rathmell,1,3 Michele M. Hickey,1,2 Natalie A. Bezman,1 Christie A. Chmielecki,3 Natalie C. Carraway,3 and M. Celeste Simon1,2 1Abramson Family Cancer Research Institute and the Department of Cell and Molecular Biology, and 2Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania; and 3Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina ABSTRACT transport and droplet formation (8, 9). Unregulated expression of the full complement of hypoxia response genes is surmised to contribute Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene much of the clinical and pathological phenotype of renal cell carci- cause tissue-specific tumors, with a striking genotype-phenotype correla- noma, which is characterized as a highly vascular, glycolytic, lipid- tion. Loss of VHL expression predisposes to hemangioblastoma and clear cell renal cell carcinoma, whereas specific point mutations predispose to rich tumor that can be associated with polycythemia (10, 11). Detailed pheochromocytoma, polycythemia, or combinations of hemangioblas- studies of the effects of VHL loss have identified the regulation of the toma, renal cell carcinoma, and/or pheochromocytoma. The VHL protein hypoxia response pathway via the proteasomal degradation of HIF1␣ (pVHL) has been implicated in many cellular activities including the and HIF2␣ as a major activity of the VHL protein (pVHL; refs. hypoxia response, cell cycle arrest, apoptosis, and extracellular matrix 12–15). The pVHL acts as the substrate receptor for an E3 ubiquitin Ϫ Ϫ remodeling.
    [Show full text]
  • (10) Patent No.: US 8715987 B2
    US008715987B2 (12) United States Patent (10) Patent No.: US 8,715,987 B2 Johnson et al. (45) Date of Patent: May 6, 2014 (54) SOLUBILIZED PHOSPHOLIPIDS FOR WO WOO 132887 A1 5, 2001 STABILIZING NUCLECACID WO WO2O080 13885 A2 1, 2008 POLYMERASES WO WO2O08077O17 A2 6, 2008 OTHER PUBLICATIONS (75) Inventors: Donald Johnson, Brookline, MA (US); Thomas C. Evans, Jr., Topsfield, MA Manual Translation CN 101570792A, Nov. 2009.* Barnes, WM. “The fidelity of Taq polymerase catalyzing PCR is (US) improved by an N-terminal deletion”. Gene, 112(1):29-35, 1992. Cann, et al., “A heterodimeric DNA polymerase: evidence that mem (73) Assignee: New England Biolabs, Inc., Ipswich, bers of Euryarchaeota possess a distinct DNA polymerase.”. Proc. MA (US) Natl. Acad. Sci. USA,95: 14250-5, 1998. Capitani.etal, “Effect of phosphatidylcholine vesicles on the activity (*) Notice: Subject to any disclaimer, the term of this of DNA polymerase-O.", Mol and Cell Biochem 27:137-138, 1979. patent is extended or adjusted under 35 Chien, et al., “Deoxyribonucleic acid polymerase from the extreme U.S.C. 154(b) by 0 days. thermophile Thermus aquaticus”,Journal of Bacteriology, 127:1550, 1976. Diaz, et al., "Accuracy of replication in the polymerase chain reaction. (21) Appl. No.: 13/450,549 Comparison between Thermotoga maritima DNA polymerase and Thermus aquaticus DNA polymerase.”. Brazilian Journal of Medical (22) Filed: Apr. 19, 2012 and Biological Research, 31:1239, 1998. Eckert , et al. “The Fidelity of DNA Polymerases used in the (65) Prior Publication Data polymerase chain reactions'. Oxford University Press, New York, US 2012/O282669 A1 Nov.
    [Show full text]
  • High-Fidelity Amplification Using a Thermostable DNA Polymerase Isolated from P’~Ococcusfuriosus
    Gette, 108 (1991) 1-6 8 1991 Elsevier Science Publishers B.V. All rights reserved. 0378-l 119/91/SO3.50 GENE 06172 High-fidelity amplification using a thermostable DNA polymerase isolated from P’~OCOCCUSfuriosus (Polymerase chain reaction; mutation frequency; lack; proofreading; 3’40-5 exonuclease; recombinant DNA; archaebacteria) Kelly S. Lundberg”, Dan D. Shoemaker*, Michael W.W. Adamsb, Jay M. Short”, Joseph A. Serge* and Eric J. Mathur” “ Division of Research and Development, Stratagene, Inc., La Jolla, CA 92037 (U.S.A.), and h Centerfor Metalloen~~vme Studies, University of Georgia, Athens, GA 30602 (U.S.A.) Tel. (404/542-2060 Received by M. Salas: 16 May 1991 Revised/Accepted: 11 August/l3 August 1991 Received at publishers: 17 September 1991 -.-- SUMMARY A thermostable DNA polymerase which possesses an associated 3’-to-5’ exonuclease (proofreading) activity has been isolated from the hyperthermophilic archaebacterium, Pyrococcus furiosus (Pfu). To test its fidelity, we have utilized a genetic assay that directly measures DNA polymerase fidelity in vitro during the polymerase chain reaction (PCR). Our results indicate that PCR performed with the DNA polymerase purified from P. furiosus yields amplification products containing less than 10s.~ of the number of mutations obtained from similar amplifications performed with Tuq DNA polymerase. The PCR fidelity assay is based on the ampli~cation and cloning of lad, lac0 and IacZor gene sequences (IcrcIOZa) using either ffil or 7ii~irqDNA poIymerase. Certain mutations within the lucf gene inactivate the Lac repressor protein and permit the expression of /?Gal. When plated on a chromogenic substrate, these Lacl - mutants exhibit a blue-plaque phenotype.
    [Show full text]
  • Imperial Life Sciences
    PRICE LIST 2020/21 Genomics Reagents & Consumables Cell & Imaging Advanced Molecular Diagnostics Imperial Life Sciences One Company Complete Solutions + 91 124 4559 800 - 99 [email protected] Imperial life Sciences (P) Ltd Price list 2020-21 (consumables) M/S NEW ENGLAND BIOLABS INC U Price Rs. (2020- Part No Description - without units Unit Size 21) E6442L NEBNext Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs) Set 2 384 rxns 2,47,940.00 E6442S NEBNext Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs) Set 2 96 rxns 68,908.00 E7850L NEBNext rRNA Depletion Kit (Bacteria) 24 rxns 1,39,104.00 E7850S NEBNext rRNA Depletion Kit (Bacteria) 6 rxns 38,254.00 E7850X NEBNext rRNA Depletion Kit (Bacteria) 96 rxns 5,00,388.00 E7860L NEBNext rRNA Depletion Kit (Bacteria) with RNA Sample Purification Beads 24 rxns 1,44,900.00 E7860S NEBNext rRNA Depletion Kit (Bacteria) with RNA Sample Purification Beads 6 rxns 39,284.00 E7860X NEBNext rRNA Depletion Kit (Bacteria) with RNA Sample Purification Beads 96 rxns 5,21,640.00 M0460T T7 RNA Polymerase (High Concentration) 50,000 units 72,643.00 M0467S Salt-T4 DNA Ligase 20,000 units 8,243.00 M0467L Salt-T4 DNA Ligase 100,000 units 32,973.00 M0470T Hi-T7 RNA Polymerase (High Concentration) 50,000 units 87,584.00 M2622L Hi-T4 DNA Ligase 100,000 units 32,973.00 M2622S Hi-T4 DNA Ligase 20,000 units 8,243.00 R0739L BsmBI-v2 1,000 units 38,254.00 R0739S BsmBI-v2 200 units 9,402.00 B0201S T4 Polynucleotide Kinase Reaction Buffer 4.0 ml 3,091.00 B0202S T4 DNA Ligase Reaction Buffer
    [Show full text]
  • Saccharomyces Cerevisiae Aspartate Kinase Mechanism and Inhibition
    In compliance with the Canadian Privacy Legislation some supporting forms may have been removed from this dissertation. While these forms may be included in the document page count, their removal does not represent any loss of content from the dissertation. Ph.D. Thesis - D. Bareich McMaster University - Department of Biochemistry FUNGAL ASPARTATE KINASE MECHANISM AND INHIBITION By DAVID C. BAREICH, B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by David C. Bareich, June 2003 1 Ph.D. Thesis - D. Bareich McMaster University - Department of Biochemistry FUNGAL ASPARTATE KINASE MECHANISM AND INHIBITION Ph.D. Thesis - D. Bareich McMaster University - Department of Biochemistry DOCTOR OF PHILOSOPHY (2003) McMaster University (Biochemistry) Hamilton, Ontario TITLE: Saccharomyces cerevisiae aspartate kinase mechanism and inhibition AUTHOR: David Christopher Bareich B.Sc. (University of Waterloo) SUPERVISOR: Professor Gerard D. Wright NUMBER OF PAGES: xix, 181 11 Ph.D. Thesis - D. Bareich McMaster University - Department of Biochemistry ABSTRACT Aspartate kinase (AK) from Saccharomyces cerevisiae (AKsc) catalyzes the first step in the aspartate pathway responsible for biosynthesis of L-threonine, L-isoleucine, and L-methionine in fungi. Little was known about amino acids important for AKsc substrate binding and catalysis. Hypotheses about important amino acids were tested using site directed mutagenesis to substitute these amino acids with others having different properties. Steady state kinetic parameters and pH titrations of the variant enzymes showed AKsc-K18 and H292 to be important for binding and catalysis. Little was known about how the S. cerevisiae aspartate pathway kinases, AKsc and homoserine kinase (HSKsc), catalyze the transfer of the y-phosphate from adenosine triphosphate (ATP) to L-aspartate or L-homoserine, respectively.
    [Show full text]