Using the Mathtımeprofessional II Fonts with LATEX
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BOONDOX Math Alphabets
BOONDOX math alphabets Michael Sharpe msharpe at ucsd dot edu The BOONDOX fonts are PostScript versions of subsets of the STIX fonts corresponding to regular and bold weights of three alphabets—calligraphic, fraktur and double struck, aka blackboard bold. Support files are provided so that they can be called up from LATEX math mode using the commands \mathcal, \mathbcal, \mathfrak, \mathbfrak, \mathbb and \mathbbb. The font family name derives from the fact that, at least in the US, the phrase “in the boondox” implies “in the stix.” The base PostScript fonts were constructed from STIXGeneral.otf and STIXGeneralBol.otf using a FontForge script, resulting in zxxrl8a.pfb % BOONDOXDoubleStruck-Regular zxxbl8a.pfb % BOONDOXDoubleStruck-Bold zxxrw8a.pfb % BOONDOXCalligraphic-Regular zxxbw8a.pfb % BOONDOXCalligraphic-Bold zxxrf8a.pfb % BOONDOXFraktur-Regular zxxbf8a.pfb % BOONDOXFraktur-Bold together with the corresponding .afm files. (The names are almost Berry conformant: the initial z warns that they break the rules, and the font id xx is completely unblessed by any authority. The remaining parts are nearly OK, except that the font lack many glyphs normally in 8a encoding, but all glyphs are in the correct slots.) Using afm2tfm, the afm files were transformed to raw tfm files (kern information discarded) zxxrl7z.tfm zxxbl7z.tfm zxxrw7z.tfm zxxbw7z.tfm zxxrf7z.tfm zxxbf7z.tfm zxxrow7z.tfm % same as zxxrw7z, less oblique zxxbow7z.tfm % same as zxxbw7z, less oblique which serve as the basis for further virtual math fonts. Finally, using FontForge scripts and manual adjustments to the metrics to suit my personal taste, produces (no pretense of using Berry names): 1 BOONDOX-r-cal.tfm BOONDOX-b-cal.tfm BOONDOX-r-calo.tfm BOONDOX-b-calo.tfm BOONDOX-r-frak.tfm BOONDOX-b-frak.tfm BOONDOX-r-ds.tfm BOONDOX-b-ds.tfm and the corresponding .vf files. -
Surviving the TEX Font Encoding Mess Understanding The
Surviving the TEX font encoding mess Understanding the world of TEX fonts and mastering the basics of fontinst Ulrik Vieth Taco Hoekwater · EuroT X ’99 Heidelberg E · FAMOUS QUOTE: English is useful because it is a mess. Since English is a mess, it maps well onto the problem space, which is also a mess, which we call reality. Similary, Perl was designed to be a mess, though in the nicests of all possible ways. | LARRY WALL COROLLARY: TEX fonts are mess, as they are a product of reality. Similary, fontinst is a mess, not necessarily by design, but because it has to cope with the mess we call reality. Contents I Overview of TEX font technology II Installation TEX fonts with fontinst III Overview of math fonts EuroT X ’99 Heidelberg 24. September 1999 3 E · · I Overview of TEX font technology What is a font? What is a virtual font? • Font file formats and conversion utilities • Font attributes and classifications • Font selection schemes • Font naming schemes • Font encodings • What’s in a standard font? What’s in an expert font? • Font installation considerations • Why the need for reencoding? • Which raw font encoding to use? • What’s needed to set up fonts for use with T X? • E EuroT X ’99 Heidelberg 24. September 1999 4 E · · What is a font? in technical terms: • – fonts have many different representations depending on the point of view – TEX typesetter: fonts metrics (TFM) and nothing else – DVI driver: virtual fonts (VF), bitmaps fonts(PK), outline fonts (PFA/PFB or TTF) – PostScript: Type 1 (outlines), Type 3 (anything), Type 42 fonts (embedded TTF) in general terms: • – fonts are collections of glyphs (characters, symbols) of a particular design – fonts are organized into families, series and individual shapes – glyphs may be accessed either by character code or by symbolic names – encoding of glyphs may be fixed or controllable by encoding vectors font information consists of: • – metric information (glyph metrics and global parameters) – some representation of glyph shapes (bitmaps or outlines) EuroT X ’99 Heidelberg 24. -
Installation
APPENDIX A Installation In case you do not already have a LATEX installation, in Sections A.1 and A.2, we describe how to install LATEX on your computer, a PC or a Mac. The installation is much easier if you obtain TEX Live 2007 (or later) from the TEX Users Group, TUG (see Section E.2). It contains both the TEX implementations we discuss. No installation is given for UNIX computers. The attraction of UNIX to its users is the incredibly large number of options, from the UNIX dialect, to the shell, the editor, and so on. A typical UNIX user downloads the code and compiles the system. This is obviously beyond the scope of this book. Nevertheless, TEX Live 2007 (or later) from the TEX Users Group supplies the compiled (binaries) of LATEX for a number of UNIX variants. First read Chapter 1, so that in this Appendix you recognize the terminology we introduce there. I will assume that you become sufficiently familiar with your LATEX distribution to be able to perform the editing cycle with the sample documents. 490 Appendix A Installation A.1 LATEX on a PC On a PC, most mathematicians use MiKTeX and the editor WinEdt. So it seems appro- priate that we start there. A.1.1 Installing MiKTeX If you made a donation to MiKTeX or if you have the TEX Live 2007 (or later) from the TEX Users Group, then you have a CD or DVD with the MiKTeX installer. Installation then is in one step and very fast. In case you do not have this CD or DVD, we show how to install from the Internet. -
Mathematical Symbol Recognition with Support Vector Machines
Mathematical Symbol Recognition with Support Vector Machines Christopher Malon a,∗, Seiichi Uchida b, Masakazu Suzuki a a Faculty of Mathematics, Kyushu University Hakozaki 6–10–1, Higashi-ku, Fukuoka, 812–8581 Japan b Faculty of Information Science and Electrical Engineering, Kyushu University Motooka 744, Nishi-ku, Fukuoka, 819–0395 Japan Abstract Single–character recognition of mathematical symbols poses challenges from its two- dimensional pattern, the variety of similar symbols that must be recognized dis- tinctly, the imbalance and paucity of training data available, and the impossibility of final verification through spell check. We investigate the use of support vector machines to improve the classification of InftyReader, a free system for the OCR of mathematical documents. First, we compare the performance of SVM kernels and feature definitions on pairs of letters that InftyReader usually confuses. Second, we describe a successful approach to multi–class classification with SVM, utilizing the ranking of alternatives within InftyReader’s confusion clusters. The inclusion of our technique in InftyReader reduces its misrecognition rate by 41%. Key words: Support vector machine; OCR; Mathematical document; Mathematical symbol recognition Preprint submitted to Elsevier 24 January 2008 1 Introduction Mathematics is the universal language of scientific literature, but a computer may find it easier to read the human language in which surrounding text is written. The failure of conventional OCR systems to treat mathematics has several consequences: • Readers of mathematical documents cannot automatically search for earlier occurences of a variable or operator, in tracing the notation and definitions used by a journal article. • The appearance of mathematics on the same line as text often confounds OCR treatment of surrounding words. -
GUST E-Foundry Workbench
OTF math fonts GUST e-foundry’s workbench Breskens, The Netherlands, 8–12X2012 Bogusław Jackowski WARNING Describing the whole process of an OTF math font creation in details would be as dull as ditchwater. © 2010–2012 *Chibi-Liam Breskens, 8–12X2012 B. Jackowski GUST e-foundry workbench... WARNING Describing the whole process of an OTF math font creation in details would be as dull as ditchwater. Therefore, I’ll give just a few less or more representative examples in hope that it will sufficiently illustrate the TEXnique we apply in the GUST e-foundry. © 2010–2012 *Chibi-Liam Breskens, 8–12X2012 B. Jackowski GUST e-foundry workbench... OTF Math font structure According to “Unicode Support for Mathematics” (Draft Unicode Technical Report #25, by Barbara Beeton, Asmus Freytag, and Murray Sargent III) and a confidential Microsoft® document “The MATH table and OpenType Features for Math Processing”, an OTF math font should contain: Breskens, 8–12X2012 B. Jackowski GUST e-foundry workbench... OTF Math font structure According to “Unicode Support for Mathematics” (Draft Unicode Technical Report #25, by Barbara Beeton, Asmus Freytag, and Murray Sargent III) and a confidential Microsoft® document “The MATH table and OpenType Features for Math Processing”, an OTF math font should contain: glyphs falling into several groups of different kind: alphabetic glyphs, subdivided further into various type of alphabets – sans serif, calligraphic, double struck (aka blackboard bold), fraktur, and... typewriter (monospace), some of them including Greek letters -
Formal Aspects of Computing: Latex2ε Guide for Authors
Under consideration for publication in Formal Aspects of Computing Formal Aspects of Computing: LATEX 2ε Guide for Authors Mark Reed1 and Christiane Notarmarco2 1Electronic Products and Composition Group, Cambridge University Press, Cambridge, 2Springer-Verlag London Limited, Godalming, Surrey, UK Abstract. This guide is for authors who are preparing papers for the Formal Aspects of Computing journal using the LATEX 2ε document-preparation system and the Formal Aspects of Computing class file (fac.cls). Keywords: LATEX 2ε; Class file; fac.cls; User guide 1. Introduction In addition to the standard submission of hardcopy from authors, Formal Aspects of Computing now accepts machine-readable forms of papers in LATEX 2ε. The layout design for the Formal Aspects of Computing journal has been implemented as a LATEX 2ε class file, based on the article class as discussed in the LATEX manual (2nd edition) [Lam94]. Commands which differ from the standard LATEX interface, or which are provided in addition to the standard interface, are explained in this guide (which is not a substitute for the LATEX manual itself). Note that the final printed version of papers will use the Monotype Times typeface rather than the Computer Modern available to authors. For this reason line and page breaks will change and authors should not insert hard breaks in their text. Authors planning to submit their papers in LATEX 2ε are advised to use fac.cls as early as possible in the creation of their files. 1.1. Introduction to LATEX LATEX is constructed as a series of macros on top of the TEX typesetting program. -
Pxtxalfa Math Alphabets Derived from Pxfonts and Txfonts
PXTXALFA MATH ALPHABETS DERIVED FROM PXFONTS AND TXFONTS MICHAEL SHARPE 1. Overview The txfonts and pxfonts packages, both created by Young Ryu but no longer under active development, provide fairly complete typesetting environments based on the Times and Palatino text font families respectively. Other packages (eg, txgreeks, providing the option of upright or slanted Greek letters) extend the range of coverage of its macros. These packages contain some interesting math alphabets. The script alphabet glyphs (upper case only) seem to be identical to those in Mathematica5, but the Fraktur font common to both packages is. as far as I can tell, distinct from the Fraktur of other major math font packages, and worthy of note. Blackboard bold comes in two different versions in txfonts (openface and double-struck) and in yet another double-struck version in pxfonts. The double-struck alphabets are similar in overall style to those in mathpazo and Mathematica7, with stems a mix of double-struck, regular weight and solid bold. The plan here is to provide virtual fonts for all these alphabets, plus packages that allow them to be used in stand-alone fashion and as part of the mathalfa package. The package contains the following files: those beginning with the letter ‘r’ are ‘raw’ fonts, not suitable for direct use, but sering as building blocks for some virtual math fonts. Raw fonts (.tfm only), resolved in map file: rtxmia Regular weight raw double-struck from txmia. pxtx.map Map file for the above, resolving rtmia to a re-encoded .pfb file. Virtual fonts (.tfm and .vf): txr-cal Regular weight calligraphic from txfonts and pxfonts. -
THE MATHALPHA, AKA MATHALFA PACKAGE the Math Alphabets
THE MATHALPHA, AKA MATHALFA PACKAGE MICHAEL SHARPE The math alphabets normally addressed via the macros \mathcal, \mathbb, \mathfrak and \mathscr are in a number of cases not well-adapted to the LATEX math font structure. Some suffer from one or more of the following defects: • font sizes are locked into a sequence that was appropriate for metafont{generated rather than scalable fonts; • there is no option in the loading package to enable scaling; • the font metrics are designed for text rather than math mode, leading to awkward spacing, subscript placement and accent placement when used for the latter; • the means of selecting a set of math alphabets varies from package to package. The goal of this package is to provide remedies for the above, where possible. This means, in effect, providing virtual fonts with my personal effort at correcting the metric issues, rewriting the font-loading macros usually found in a .sty and/or .fd files to admit a scale factor in all cases, and providing a .sty file which is extensible and from which any such math alphabet may be specified using a standard recipe. For example, the following fonts are potentially suitable as targets for \mathcal or \mathscr and are either included as part of TEXLive 2011, as free downloads from CTAN or other free sources, or from commercial sites. cm % Computer Modern Math Italic (cmsy) euler % euscript rsfs % Ralph Smith Formal Script---heavily sloped rsfso % based on rsfs, much less sloped lucida % From Lucida New Math (commercial) mathpi % Adobe Mathematical Pi or clones thereof -
Bibliography and Index
TLC2, ch-end.tex,v: 1.39, 2004/03/19 p.963 Bibliography [1] Adobe Systems Incorporated. Adobe Type 1 Font Format. Addison-Wes- ley, Reading, MA, USA, 1990. ISBN 0-201-57044-0. The “black book” contains the specifications for Adobe’s Type 1 font format and describes how to create a Type 1 font program. The book explains the specifics of the Type 1 syntax (a subset of PostScript), including information on the structure of font programs, ways to specify computer outlines, and the contents of the various font dictionaries. It also covers encryption, subroutines, and hints. http://partners.adobe.com/asn/developer/pdfs/tn/T1Format.pdf [2] Adobe Systems Incorporated. “PostScript document structuring conven- tions specification (version 3.0)”. Technical Note 5001, 1992. This technical note defines a standard set of document structuring conventions (DSC), which will help ensure that a PostScript document is device independent. DSC allows PostScript language programs to communicate their document structure and printing requirements to document managers in a way that does not affect the PostScript language page description. http://partners.adobe.com/asn/developer/pdfs/tn/5001.DSC_Spec.pdf [3] Adobe Systems Incorporated. “Encapsulated PostScript file format specifi- cation (version 3.0)”. Technical Note 5002, 1992. This technical note details the Encapsulated PostScript file (epsf) format, a standard format for importing and exporting PostScript language files among applications in a variety of heteroge- neous environments. The epsf format is based on and conforms to the document structuring conventions (DSC) [2]. http://partners.adobe.com/asn/developer/pdfs/tn/5002.EPSF_Spec.pdf [4] Adobe Systems Incorporated. -
Math Symbol Tables
APPENDIX A Math symbol tables A.1 Hebrew and Greek letters Hebrew letters Type Typeset \aleph ℵ \beth ℶ \daleth ℸ \gimel ℷ © Springer International Publishing AG 2016 481 G. Grätzer, More Math Into LATEX, DOI 10.1007/978-3-319-23796-1 482 Appendix A Math symbol tables Greek letters Lowercase Type Typeset Type Typeset Type Typeset \alpha \iota \sigma \beta \kappa \tau \gamma \lambda \upsilon \delta \mu \phi \epsilon \nu \chi \zeta \xi \psi \eta \pi \omega \theta \rho \varepsilon \varpi \varsigma \vartheta \varrho \varphi \digamma ϝ \varkappa Uppercase Type Typeset Type Typeset Type Typeset \Gamma Γ \Xi Ξ \Phi Φ \Delta Δ \Pi Π \Psi Ψ \Theta Θ \Sigma Σ \Omega Ω \Lambda Λ \Upsilon Υ \varGamma \varXi \varPhi \varDelta \varPi \varPsi \varTheta \varSigma \varOmega \varLambda \varUpsilon A.2 Binary relations 483 A.2 Binary relations Type Typeset Type Typeset < < > > = = : ∶ \in ∈ \ni or \owns ∋ \leq or \le ≤ \geq or \ge ≥ \ll ≪ \gg ≫ \prec ≺ \succ ≻ \preceq ⪯ \succeq ⪰ \sim ∼ \approx ≈ \simeq ≃ \cong ≅ \equiv ≡ \doteq ≐ \subset ⊂ \supset ⊃ \subseteq ⊆ \supseteq ⊇ \sqsubseteq ⊑ \sqsupseteq ⊒ \smile ⌣ \frown ⌢ \perp ⟂ \models ⊧ \mid ∣ \parallel ∥ \vdash ⊢ \dashv ⊣ \propto ∝ \asymp ≍ \bowtie ⋈ \sqsubset ⊏ \sqsupset ⊐ \Join ⨝ Note the \colon command used in ∶ → 2, typed as f \colon x \to x^2 484 Appendix A Math symbol tables More binary relations Type Typeset Type Typeset \leqq ≦ \geqq ≧ \leqslant ⩽ \geqslant ⩾ \eqslantless ⪕ \eqslantgtr ⪖ \lesssim ≲ \gtrsim ≳ \lessapprox ⪅ \gtrapprox ⪆ \approxeq ≊ \lessdot -
The Comprehensive LATEX Symbol List
The Comprehensive LATEX Symbol List Scott Pakin <[email protected]>∗ 22 September 2005 Abstract This document lists 3300 symbols and the corresponding LATEX commands that produce them. Some of these symbols are guaranteed to be available in every LATEX 2ε system; others require fonts and packages that may not accompany a given distribution and that therefore need to be installed. All of the fonts and packages used to prepare this document—as well as this document itself—are freely available from the Comprehensive TEX Archive Network (http://www.ctan.org/). Contents 1 Introduction 6 1.1 Document Usage . 6 1.2 Frequently Requested Symbols . 6 2 Body-text symbols 7 Table 1: LATEX 2ε Escapable “Special” Characters . 7 Table 2: Predefined LATEX 2ε Text-mode Commands . 7 Table 3: LATEX 2ε Commands Defined to Work in Both Math and Text Mode . 7 Table 4: AMS Commands Defined to Work in Both Math and Text Mode . 7 Table 5: Non-ASCII Letters (Excluding Accented Letters) . 8 Table 6: Letters Used to Typeset African Languages . 8 Table 7: Letters Used to Typeset Vietnamese . 8 Table 8: Punctuation Marks Not Found in OT1 . 8 Table 9: pifont Decorative Punctuation Marks . 8 Table 10: tipa Phonetic Symbols . 9 Table 11: tipx Phonetic Symbols . 10 Table 13: wsuipa Phonetic Symbols . 10 Table 14: wasysym Phonetic Symbols . 11 Table 15: phonetic Phonetic Symbols . 11 Table 16: t4phonet Phonetic Symbols . 12 Table 17: semtrans Transliteration Symbols . 12 Table 18: Text-mode Accents . 12 Table 19: tipa Text-mode Accents . 12 Table 20: extraipa Text-mode Accents . -
Organization MFG Discussion Document Task 1
MFG discussion document Task 1: Organization 1 Summary of math font-related activities mote the use of MathML on the World Wide Web at EuroTEX '98 without being restricted to the symbol complement provided by the system fonts. 1 Introduction Information about the list of symbols collected The subject of math symbol fonts has been one of by the STIX project currently resides on internal the major topics of interest at the 10th European pages on the AMS Web server [2] and is kept in a TEX Conference (EuroTEX '98), which was held on format similar to the Unicode symbol tables [3], but March 29{31, 1998 at St. Malo, France as part of there are plans to release a printable version of these the 2nd Week on Electronic Publishing and Digital tables in PDF format to the general public soon. Typography (WEPT '98). It was pointed out that a printable version of During the conference a paper summarizing the the symbol tables from the MathML specification is 1 MFG supposed to be available in PDF format on the W3C activities of the Math Font Group ( ) [1] was 2 presented and two BOF sessions on math fonts were Web server [4]. The latest version of the MathML held, bringing together members of the MFG and specification also includes some background infor- representatives of other interested parties, such as mation about the STIX project and references to the W3C MathML working group, the STIX project, various other glyph collections [5, Chapter 6]. as well as publishers and typesetters. 3 Implementation of new 8-bit math fonts In addition, there were also many private dis- for (LA)TEX cussions on math fonts at lunches, dinners, and at informal get-togethers in the local caf´es or pubs.