Downloaded from rnajournal.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press A Comparative Study of Small Molecules Targeting eIF4A Sai Kiran Naineni1,*, Rayelle Itoua Maïga1,*, Regina Cencic1, Andrea A. Putnam2, Luis A. Amador3, Abimael D. Rodriguez3, Eckhard Jankowsky2, and Jerry Pelletier1,4,5 1Department of Biochemistry, McGill University, 2Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH; 3University of Puerto Rico, Faculty of Natural Sciences, Dept of Chemistry, San Juan, Puerto Rico, 4Department of Oncology, 5Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Québec, Canada, H3G 1Y6 Running Title: A comparative study of eIF4A inhibitors Key words: Translation initiation, eIF4A, RNA helicase, eIF4F, hippuristanol *Equal contribution by both authors To whom correspondence should be addressed: Jerry Pelletier, Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada. Tel: 1-514-398-2323; Fax: 514-398-2965; Email:
[email protected] 1 Downloaded from rnajournal.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT The PI3K/Akt/mTOR kinase pathway is extensively deregulated in human cancers. One critical node under regulation of this signaling axis is eukaryotic initiation factor (eIF) 4F, a complex involved in the control of translation initiation rates. eIF4F-dependent addictions arise during tumor initiation and maintenance due to increased eIF4F activity – generally in response to elevated PI3K/Akt/mTOR signaling flux. There is thus much interest in exploring eIF4F as a small molecule target for the development of new anti-cancer drugs. The DEAD-box RNA helicase, eIF4A, is an essential subunit of eIF4F and several potent small molecules (rocaglates, hippuristanol, pateamine A) affecting its activity have been identified and shown to demonstrate anti-cancer activity in vitro and in vivo in pre-clinical models.