Glacier Terminus Estimation from Landsat Image Intensity Profiles

Total Page:16

File Type:pdf, Size:1020Kb

Glacier Terminus Estimation from Landsat Image Intensity Profiles Glacier Terminus Estimation from Landsat Image Intensity Profiles Joseph Usset1, Arnab Maity2, Ana-Maria Staicu3 and Armin Schwartzman4 Abstract Mountain glacier retreat is an important problem related to temperature increase caused by global climate change. The retreat of mountain glaciers has been studied from the ground, but there exists a need for automated methods to catalog glacial change with a wider scope. A viable approach is to extract intensity profiles from Landsat images along the glacial flowline and follow the terminus location over time. We propose a new robust and accurate statistical algorithm to estimate the movement of glacial termini over time from these extracted image intensity profiles. The method we propose first uses regression splines to smooth the image intensity profiles. For each profile the glacial terminus location is assumed to lie near a point of high negative change in the smoothed profiles. An approximate path of termini locations over time is obtained by an algorithm that seeks to minimize the cumulative first derivative value across the profiles. Spline smoothing is applied to this pilot path for estimation of long-term terminus movement. The predictions from the method are evaluated on simu- lated data and compared to available ground measurements for the Nigardsbreen, Gorner, Rhone, and Franz Josef glaciers. Keywords: Change-Point Estimation; Cross-Validation; Non-parametric Regression; Satellite Imagery; Spline smoothing. 1Department of Biostatistics, University of Kansas, Kansas city, USA (E-mail: [email protected]). 2Department of Statistics, North Carolina State University, Raleigh, USA (E-mail: [email protected]). 3Department of Statistics, North Carolina State University, Raleigh, USA (E-mail: [email protected]). 4Department of Statistics, North Carolina State University, Raleigh, USA (E-mail: [email protected]). 1 1 Introduction Mountain glacier retreat is an important problem for several reasons. Glaciers can be used as a proxy indicator for global climate change, and in particular temperature change [17]. Also, glacial retreat affects water supply in communities where glacial melt is a source of freshwater [5, 21]. Over the past several decades, there has been a widely reported retreat of mountain glaciers, and this retreat has accelerated in the past decade [18, 6, 17, 21, 5]. For these reasons, there is an interest in tracking mountain glacier retreat worldwide. One method for tracking glacial retreat has been ground measurements, but these can be difficult to obtain. Instead, [12] and [11] have proposed to locate and track glacier termini over time using Landsat images, which have been available to the public since 2009. This approach is based on image intensity profiles extracted from the Landsat images along the glacier flowline. In this paper we present an improved statistical algorithm used to locate and track glacial termini over time from the extracted image intensity profiles. Figure 1 demonstrates the basic elements of our analysis, using the Nigardsbreen mountain glacier as an example. The top left plot shows a 2-dimensional (2-D) false color composite image of the glacier cropped from the Landsat archive at a given time frame. Drawn on it in yellow is a 1-dimensional (1-D) outline of the glacier flowline, produced semi-manually by the method of [12]. The red arrow indicates the terminus location, at the boundary of the ice and a sub-glacial lake. The top right plot displays the extracted intensity profiles along the flowline from 15 spatially registered Landsat images (thermal band B62) between 2000 to 2012. The terminus location corresponds to the high-to-low transition in each profile. The bottom plots present the image profiles over time, where the terminus location corresponds to the blue-to-brown transition. The estimated glacier terminus path from our proposed statistical algorithm is shown in yellow, with confidence bands shown in black and compared to ground measurements represented by the red dots. Note that the ground measurements were not used at all in the estimation, indicating how remarkably accurate the proposed method can be based on the Landsat images alone. In this paper we describe the statistical algorithm that produced the estimated glacier terminus path and confidence bands. The algorithm we propose receives as input the time series of 1-D spatial intensity profiles and gives as output the estimated terminus path over time. The proposed algorithm contains three main steps: 1. Smooth the intensity profiles; and obtain the first derivative estimates of the smoothed 2 250 200 150 Profile Intensity 100 50 0 500 1000 1500 2000 2500 Space Along Glacier Path 250 250 2010 2010 MIAE = 7.7 MAD = 12.9 200 200 2008 2008 COV = .90 2006 150 2006 150 Year Year 2004 2004 100 100 2002 2002 0 500 1000 1500 2000 2500 1300 1400 1500 1600 1700 Space along the Glacial Path (Meters) Space along the Glacial Path (Meters) Figure 1: Top left: 2-D cropped Landsat image of Nigardsbreen glacier with marked flow- line (yellow) and terminus (red arrow). Top right: Extracted 1-D intensity profiles along the flowline. Bottom left: Extracted 1-D intensity profiles laid out over time; along with the estimated terminus path (yellow), confidence intervals (black), and ground measure- ments (red dots), with evaluated metrics in the legend. Obstructed profiles appear as light blue stripes. Bottom right: Zoomed in display of estimated path, confidence intervals, and ground measurements. Time points where the image profiles were observed are marked by purple hash marks on the left of the image. 3 profiles. 2. Input the estimated first derivative profiles into an algorithm that outputs a pilot path of the terminus location over time by minimizing the integrated first derivative. 3. Globally smooth the pilot path to estimate the long-term advance or retreat of the terminus. The above algorithm, beginning with Step 1, is motivated by the fact that the terminus of the glacier is often marked by a sharp high-to-low transition of the intensity profile, which corresponds to a highly negative local minimum of the first derivative after smooth- ing (Figure 1). However, as we shall see in other glaciers, sharp local minima can also occur due to obstructive elements such as shadows from nearby mountains and debris. In addition, the glacier terminus itself may be occluded by clouds and seasonal snowfall, producing flat profiles such as those observed in Figure 1 (top right panel) and as blue horizontal stripes in Figure 1 (bottom panels). These sources of error, which we call sys- tematic, are mostly deterministic but hard to model because not enough information about them is available. Step 2 overcomes the systematic error by finding a controlled sequence of locations over time that captures persistent local minima. Step 3 removes local noise. The proposed algorithm follows roughly the same framework as [11], although there are some important differences in the approaches. In Step 1 of [11], first derivatives of the mean intensity profiles are estimated directly with local kernel smoothing. A drawback of this approach is the difficulty of determining a fixed local smoothing bandwidth that will provide a good fit globally over the entire spatial domain of the intensity profiles. We correct this by using global spline smoothing instead, fitted by penalized weighted least squares with generalized cross-validation. In Step 2 of [11], a tracking algorithm is applied to connect local minima of the first derivative between consecutive time points. However, because it forces the pilot path to pass through those local minima, it is sensitive to systematic noise. We fix this by globally minimizing the integrated first derivative over time. The proposed pilot path algorithm robustly finds the terminus path despite systematic error in the derivative profiles. Finally, in Step 3, [11] estimate the long-term terminus location change by local kernel smoothing of the pilot path. In addition to the bandwidth selection problem mentioned before, local smoothing gives imprecise or non- existent estimates over time periods where the image data is sparse. Instead, we gain more precise estimates of long-term glacial retreat by smoothing the pilot path with global spline smoothing. 4 From a broader statistical viewpoint, the work presented here relates to the problem of change point detection, which has been well studied in the context of nonparametric regression [15, 13, 10]. However, the specific data analysis problem treated here presents a unique methodological challenge; as opposed to identifying change points in an individual continuous curve, we seek a path of change points from a time series of continuous curves. Moreover, while multiple change points may exist in each intensity profile (e.g. due to shadows in the original images), we are interested in a sequence of change points whose location changes smoothly over time. The 3-step algorithm presented above solves this problem. The paper is organized as follows. Section 2 provides a description of the data and how it was obtained. Section 3 discusses smoothing of the intensity profiles with penal- ized regression splines (Step 1), and shows how this facilitates smooth derivative estimates. Section 4 describes the pilot path algorithm that gives an initial estimate of the terminus path (Step 2), and compares this method to the tracking algorithm of [11]. Section 5 dis- cusses temporal spline smoothing of the pilot path (Step 3), and evaluates several weight- ing schemes that can be used to estimate the long-term trend of the terminus location. Sections 6 and 7 include a numerical study and real data analyses of the Nigardsbreen, Gorner, Rhone, and Franz Josef glaciers. Section 8 summarizes our method and presents future directions for research. 2 Data Description For a given mountain glacier, the proposed method takes as inputs Landsat image intensity profiles extracted along the glacier flowline. The image profiles used here were obtained using a Matlab graphical user interface (GUI) designed for this purpose; see [12].
Recommended publications
  • Impact of Climate Change in Kalabaland Glacier from 2000 to 2013 S
    The Asian Review of Civil Engineering ISSN: 2249 - 6203 Vol. 3 No. 1, 2014, pp. 8-13 © The Research Publication, www.trp.org.in Impact of Climate Change in Kalabaland Glacier from 2000 to 2013 S. Rahul Singh1 and Renu Dhir2 1Reaserch Scholar, 2Associate Professor, Department of CSE, NIT, Jalandhar - 144 011, Pubjab, India E-mail: [email protected] (Received on 16 March 2014 and accepted on 26 June 2014) Abstract - Glaciers are the coolers of the planet earth and the of the clearest indicators of alterations in regional climate, lifeline of many of the world’s major rivers. They contain since they are governed by changes in accumulation (from about 75% of the Earth’s fresh water and are a source of major snowfall) and ablation (by melting of ice). The difference rivers. The interaction between glaciers and climate represents between accumulation and ablation or the mass balance a particularly sensitive approach. On the global scale, air is crucial to the health of a glacier. GSI (op cit) has given temperature is considered to be the most important factor details about Gangotri, Bandarpunch, Jaundar Bamak, Jhajju reflecting glacier retreat, but this has not been demonstrated Bamak, Tilku, Chipa ,Sara Umga Gangstang, Tingal Goh for tropical glaciers. Mass balance studies of glaciers indicate Panchi nala I , Dokriani, Chaurabari and other glaciers of that the contributions of all mountain glaciers to rising sea Himalaya. Raina and Srivastava (2008) in their ‘Glacial Atlas level during the last century to be 0.2 to 0.4 mm/yr. Global mean temperature has risen by just over 0.60 C over the last of India’ have documented various aspects of the Himalayan century with accelerated warming in the last 10-15 years.
    [Show full text]
  • Protecting the Crown: a Century of Resource Management in Glacier National Park
    Protecting the Crown A Century of Resource Management in Glacier National Park Rocky Mountains Cooperative Ecosystem Studies Unit (RM-CESU) RM-CESU Cooperative Agreement H2380040001 (WASO) RM-CESU Task Agreement J1434080053 Theodore Catton, Principal Investigator University of Montana Department of History Missoula, Montana 59812 Diane Krahe, Researcher University of Montana Department of History Missoula, Montana 59812 Deirdre K. Shaw NPS Key Official and Curator Glacier National Park West Glacier, Montana 59936 June 2011 Table of Contents List of Maps and Photographs v Introduction: Protecting the Crown 1 Chapter 1: A Homeland and a Frontier 5 Chapter 2: A Reservoir of Nature 23 Chapter 3: A Complete Sanctuary 57 Chapter 4: A Vignette of Primitive America 103 Chapter 5: A Sustainable Ecosystem 179 Conclusion: Preserving Different Natures 245 Bibliography 249 Index 261 List of Maps and Photographs MAPS Glacier National Park 22 Threats to Glacier National Park 168 PHOTOGRAPHS Cover - hikers going to Grinnell Glacier, 1930s, HPC 001581 Introduction – Three buses on Going-to-the-Sun Road, 1937, GNPA 11829 1 1.1 Two Cultural Legacies – McDonald family, GNPA 64 5 1.2 Indian Use and Occupancy – unidentified couple by lake, GNPA 24 7 1.3 Scientific Exploration – George B. Grinnell, Web 12 1.4 New Forms of Resource Use – group with stringer of fish, GNPA 551 14 2.1 A Foundation in Law – ranger at check station, GNPA 2874 23 2.2 An Emphasis on Law Enforcement – two park employees on hotel porch, 1915 HPC 001037 25 2.3 Stocking the Park – men with dead mountain lions, GNPA 9199 31 2.4 Balancing Preservation and Use – road-building contractors, 1924, GNPA 304 40 2.5 Forest Protection – Half Moon Fire, 1929, GNPA 11818 45 2.6 Properties on Lake McDonald – cabin in Apgar, Web 54 3.1 A Background of Construction – gas shovel, GTSR, 1937, GNPA 11647 57 3.2 Wildlife Studies in the 1930s – George M.
    [Show full text]
  • Terminal Zone Glacial Sediment Transfer at a Temperate Overdeepened Glacier System Swift, D
    University of Dundee Terminal zone glacial sediment transfer at a temperate overdeepened glacier system Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R. Published in: Quaternary Science Reviews DOI: 10.1016/j.quascirev.2017.11.027 Publication date: 2018 Licence: CC BY-NC-ND Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Swift, D. A., Cook, S. J., Graham, D. J., Midgley, N. G., Fallick, A. E., Storrar, R., Toubes Rodrigo, M., & Evans, D. J. A. (2018). Terminal zone glacial sediment transfer at a temperate overdeepened glacier system. Quaternary Science Reviews, 180, 111-131. https://doi.org/10.1016/j.quascirev.2017.11.027 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Quaternary Science Reviews 180 (2018) 111e131 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Terminal zone glacial sediment transfer at a temperate overdeepened glacier system * D.A.
    [Show full text]
  • The Impact of Glacier Geometry on Meltwater Plume Structure and Submarine Melt in Greenland Fjords
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER The impact of glacier geometry on meltwater 10.1002/2016GL070170 plume structure and submarine melt Key Points: in Greenland fjords • We simulate subglacial plumes and submarine melt in 12 Greenland fjords D. Carroll1, D. A. Sutherland1, B. Hudson2, T. Moon1,3, G. A. Catania4,5, E. L. Shroyer6, J. D. Nash6, spanning grounding line depths from 4,5 4,5 7 8 8 100 to 850 m T. C. Bartholomaus , D. Felikson , L. A. Stearns , B. P. Y. Noël , and M. R. van den Broeke • Deep glaciers produce warm, salty 1 2 subsurface plumes that undercut ice; Department of Earth Sciences, University of Oregon, Eugene, Oregon, USA, Applied Physics Laboratory, University of shallow glaciers drive cold, fresh Washington, Seattle, Washington, USA, 3Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, surface plumes that can overcut Bristol, UK, 4Institute for Geophysics, University of Texas, Austin, Texas, USA, 5Department of Geology, University of Texas, • Plumes in cold, shallow fjords can Austin, Texas, USA, 6College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA, induce comparable depth-averaged 7 8 melt rates to warm, deep fjords due to Department of Geology, University of Kansas, Lawrence, Kansas, USA, Institute for Marine and Atmospheric Research sustained upwelling velocities Utrecht, Utrecht University, Utrecht, Netherlands Supporting Information: Abstract Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling • Supporting Information S1 plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes Correspondence to: enhance melt and undercutting, leading to calving and potential glacier destabilization.
    [Show full text]
  • Glaciers of the Canadian Rockies
    Glaciers of North America— GLACIERS OF CANADA GLACIERS OF THE CANADIAN ROCKIES By C. SIMON L. OMMANNEY SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD Edited by RICHARD S. WILLIAMS, Jr., and JANE G. FERRIGNO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1386–J–1 The Rocky Mountains of Canada include four distinct ranges from the U.S. border to northern British Columbia: Border, Continental, Hart, and Muskwa Ranges. They cover about 170,000 km2, are about 150 km wide, and have an estimated glacierized area of 38,613 km2. Mount Robson, at 3,954 m, is the highest peak. Glaciers range in size from ice fields, with major outlet glaciers, to glacierets. Small mountain-type glaciers in cirques, niches, and ice aprons are scattered throughout the ranges. Ice-cored moraines and rock glaciers are also common CONTENTS Page Abstract ---------------------------------------------------------------------------- J199 Introduction----------------------------------------------------------------------- 199 FIGURE 1. Mountain ranges of the southern Rocky Mountains------------ 201 2. Mountain ranges of the northern Rocky Mountains ------------ 202 3. Oblique aerial photograph of Mount Assiniboine, Banff National Park, Rocky Mountains----------------------------- 203 4. Sketch map showing glaciers of the Canadian Rocky Mountains -------------------------------------------- 204 5. Photograph of the Victoria Glacier, Rocky Mountains, Alberta, in August 1973 -------------------------------------- 209 TABLE 1. Named glaciers of the Rocky Mountains cited in the chapter
    [Show full text]
  • S1 Processing of Terminus Positions Many of the Published Sources
    S1 Processing of terminus positions Many of the published sources (Table S1) have taken care to account for seasonality in terminus position by, for example, sampling at the same time each year, but we do not think this is a hugely important consideration because the long-term changes we are interested in are far larger than the seasonal variability at a given glacier. When we had to convert terminus 5 traces to terminus position (e.g. for the NSIDC positions) we used the bow method (Bjork et al., 2012). Many glaciers have a terminus position dataset coming from more than one source. In these cases we remove or merge the datasets according to the procedure summarized in Figure S1. Where a dataset has a shorter time period and a lower or similar sampling frequency compared to another dataset, the former dataset is removed. For example, the Carr et al. (2017) and Bunce et al. (2018) datasets are removed in favor of the Cowton et al. (2018) dataset for Helheim glacier (Figure S2). 10 We merge two datasets when a longer record can be made by combining the two. The datasets are merged by calculating an offset during the overlapping period, and then shifting one of the datasets to make a continuous record. The final terminus position record for Helheim thus consists of a merged form of the Andresen et al. (2012), Cowton et al. (2018) and Joughin et al. records (Figure S2). Lastly, glaciers that are known to have a permanent ice shelf/tongue (Petermann, Ryder, 79N), or to surge (Storstrommen) are removed from the dataset.
    [Show full text]
  • Seafloor Geomorphology of Western Antarctic Peninsula Bays
    The Cryosphere, 12, 205–225, 2018 https://doi.org/10.5194/tc-12-205-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Seafloor geomorphology of western Antarctic Peninsula bays: a signature of ice flow behaviour Yuribia P. Munoz and Julia S. Wellner Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA Correspondence: Yuribia P. Munoz ([email protected]) Received: 12 June 2017 – Discussion started: 22 June 2017 Revised: 4 November 2017 – Accepted: 13 November 2017 – Published: 22 January 2018 Abstract. Glacial geomorphology is used in Antarctica to 1 Introduction reconstruct ice advance during the Last Glacial Maximum and subsequent retreat across the continental shelf. Analo- While warming temperatures in the Antarctic Peninsula (AP) gous geomorphic assemblages are found in glaciated fjords have resulted in the retreat of 90 % of the regional glaciers and are used to interpret the glacial history and glacial dy- (Cook et al., 2014) and the collapse of ice shelves (Morris namics in those areas. In addition, understanding the distri- and Vaughan, 2003; Cook and Vaughan, 2010), recent stud- bution of submarine landforms in bays and the local con- ies have shown that since the late 1990s this region is cur- trols exerted on ice flow can help improve numerical models rently experiencing a cooling trend (Turner et al., 2016). The by providing constraints through these drainage areas. We AP is a dynamic region that serves as a natural laboratory present multibeam swath bathymetry from several bays in to study ice flow and the resulting sediment deposits.
    [Show full text]
  • Seafloor Geomorphology of Western Antarctic Peninsula Bays: a Signature of Ice Flow Behaviour Yuribia P
    Seafloor geomorphology of western Antarctic Peninsula bays: a signature of ice flow behaviour Yuribia P. Munoz1, Julia S. Wellner1 1Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204 USA 5 Correspondence to: Y.P. Munoz ([email protected]) Abstract. Glacial geomorphology is used in Antarctica to reconstruct ice advance during the Last Glacial Maximum and subsequent retreat across the continental shelf. Analogous geomorphic assemblages are found in glaciated fjords and are used to interpret the glacial history and glacial dynamics in those areas. In addition, understanding the distribution of 10 submarine landforms in bays and the local controls exerted on ice flow can help improve numerical models by providing constraints through these drainage areas. We present multibeam swath bathymetry from several bays in the South Shetland Islands and the western Antarctic Peninsula. The submarine landforms are described and interpreted in detail. A schematic model was developed showing the features found in the bays; from glacial lineations and moraines in the inner bay, to grounding zone wedges and drumlinoid features in the middle bay, and streamlined features and meltwater channels in the 15 outer bay areas. In addition, we analysed local variables in the bays and observe that: 1) the number of landforms found in the bays scales to the size of the bay, however the geometry of the bays dictates the types of features that form, specifically, we observe a correlation between the bay width and the number of transverse features present in the bays; 2) the smaller seafloor features are present only in the smaller glacial systems indicating that short-lived atmospheric and oceanographic fluctuations, responsible for the formation of these landforms, are only recorded in these smaller systems; and 3) meltwater 20 channels are abundant on the seafloor, however some are subglacial, carved in bedrock, and some are modern erosional features, carved on soft sediment.
    [Show full text]
  • The Impact of Glacier Geometry on Meltwater Plume Structure and Submarine Melt in Greenland Fjords
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER The impact of glacier geometry on meltwater 10.1002/2016GL070170 plume structure and submarine melt Key Points: in Greenland fjords • We simulate subglacial plumes and submarine melt in 12 Greenland fjords D. Carroll1, D. A. Sutherland1, B. Hudson2, T. Moon1,3, G. A. Catania4,5, E. L. Shroyer6, J. D. Nash6, spanning grounding line depths from 4,5 4,5 7 8 8 100 to 850 m T. C. Bartholomaus , D. Felikson , L. A. Stearns , B. P. Y. Noël , and M. R. van den Broeke • Deep glaciers produce warm, salty 1 2 subsurface plumes that undercut ice; Department of Earth Sciences, University of Oregon, Eugene, Oregon, USA, Applied Physics Laboratory, University of shallow glaciers drive cold, fresh Washington, Seattle, Washington, USA, 3Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, surface plumes that can overcut Bristol, UK, 4Institute for Geophysics, University of Texas, Austin, Texas, USA, 5Department of Geology, University of Texas, • Plumes in cold, shallow fjords can Austin, Texas, USA, 6College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA, induce comparable depth-averaged 7 8 melt rates to warm, deep fjords due to Department of Geology, University of Kansas, Lawrence, Kansas, USA, Institute for Marine and Atmospheric Research sustained upwelling velocities Utrecht, Utrecht University, Utrecht, Netherlands Supporting Information: Abstract Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling • Supporting Information S1 plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes Correspondence to: enhance melt and undercutting, leading to calving and potential glacier destabilization.
    [Show full text]
  • Field Mapping Glacier Extents at Mount Rainier for Hazard Recognition
    Field Mapping Glacier Extents at Mount Rainier for Hazard Recognition Steve Wilson1, Andrew Fountain1 Portland State University, Department of Geology, Portland, OR Introduction The goal of this report is to describe the role glaciers play in the local and regional hydrology and the impact they may have on the environment and infrastructure of Mount Rainier National Park. Methods included field verification of the spatial extent of debris-covered ice, observing the velocity of debris-covered ice using both field techniques as well as remote sensing techniques, and estimating volume change of glacier ice using airborne LiDAR digital elevation models. Background Mount Rainier is a 4,395 m high stratovolcano that supports the largest concentration of glacier ice in the United States exclusive of Alaska (Krimmel, 2002). There are 143 glaciers and permanent snowfields on Mount Rainier with a total area of 83.3 km2, 27 of these are named glaciers (82.1 km2) (Nylen, 2004). With glacier ice spanning from the summit down to 1,075 m, Mount Rainier is home to the largest glacier (Emmons Glacier, 11.2 km2), the longest glacier (Carbon Glacier, 8.2 km), and the lowest glacier terminus (Carbon Glacier, 1,070 m) in the coterminous United States (Krimmel, 2002). The glaciers on Mount Rainier have a total ice volume of 4.4 km3 (Driedger and Kennard, 1987). Nylen (2004), among others, recognized the importance of quantifying the spatial extent of debris-covered ice as it is a major influence on ablation and can contribute to glaciers extending further down valley than if they were clean.
    [Show full text]
  • Velocity Increases at Cook Glacier, East Antarctica Linked to Ice Shelf Loss and a Subglacial Flood Event
    Velocity increases at Cook Glacier, East Antarctica linked to ice shelf loss and a subglacial flood event Bertie W.J. Miles1*, Chris R. Stokes1, Stewart S.R. Jamieson1 1Department of Geography, Durham University, Science Site, South Road, Durham, DH1 3LE 5 Correspondence to: [email protected] Abstract: Cook Glacier drains a large proportion of the Wilkes Subglacial Basin in East Antarctica, a region thought to be vulnerable to marine ice sheet instability and with potential to make a significant contribution to sea-level. Despite its importance, there have been very 10 few observations of its longer-term behaviour (e.g. of velocity or changes at its ice front). Here we use a variety of satellite imagery to produce a time-series of ice-front position change from 1947-2017 and ice velocity from 1973-2017. Cook Glacier has two distinct outlets (termed East and West) and we observe the near-complete loss of the Cook West Ice Shelf at some time between 1973 and 1989. This was associated with a doubling of the velocity of Cook West 15 glacier, which may also be linked to previously published reports of inland thinning. The loss of the Cook West Ice Shelf is surprising given that the present-day ocean-climate conditions in the region are not typically associated with catastrophic ice shelf loss. However, we speculate that a more intense ocean-climate forcing in the mid-20th century may have been important in forcing its collapse. Since the loss of the Cook West Ice Shelf, the presence of landfast sea-ice 20 and mélange in the newly formed embayment appears to be important in stabilising the glacier front and enabling periodic advances.
    [Show full text]
  • The Hydrology of Glacier‐Bed Overdeepenings
    Received: 25 August 2020 Revised: 25 May 2021 Accepted: 26 May 2021 DOI: 10.1002/esp.5173 RESEARCH ARTICLE The hydrology of glacier-bed overdeepenings: Sediment transport mechanics, drainage system morphology, and geomorphological implications Darrel A. Swift1 | Guy D. Tallentire1,2 | Daniel Farinotti3,4 | Simon J. Cook5,6 | William J. Higson1 | Robert G. Bryant1 1Department of Geography, University of Sheffield, Sheffield, UK Abstract 2Geography and Environment, Loughborough Evacuation of basal sediment by subglacial drainage is an important mediator of rates University, Loughborough, UK of glacial erosion and glacier flow. Glacial erosion patterns can produce closed basins 3Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH, Zurich, Switzerland (i.e., overdeepenings) in glacier beds, thereby introducing adverse bed gradients that 4Swiss Federal Institute for Forest, Snow and are hypothesized to reduce drainage system efficiency and thus favour basal sedi- Landscape Research, WSL, Birmensdorf, ment accumulation. To establish how the presence of a terminal overdeepening Switzerland 5Geography and Environmental Science, might mediate seasonal drainage system evolution and glacial sediment export, we University of Dundee, Dundee, UK measured suspended sediment transport from Findelengletscher, Switzerland during 6 UNESCO Centre for Water Law, Policy and late August and early September 2016. Analyses of these data demonstrate poor Science, University of Dundee, Dundee, UK hydraulic efficiency of drainage pathways in the terminus region but high sediment Correspondence availability. Specifically, the rate of increase of sediment concentration with Darrel A. Swift, Department of Geography, University of Sheffield, Winter Street. discharge was found to be significantly lower than that anticipated if channelized Sheffield, S10 2TN, UK. flow paths were present.
    [Show full text]