Including the Description of a New Lepidozona
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fossil and Recent Molluscan Types in the Auckland War Memorial Museum
Fossil and Recent molluscan types in the Auckland War Memorial Museum. Part 2: Polyplacophora and Scaphopoda Wilma M. Blom Auckland War Memorial Museum Abstract The Marine Department of Auckland War Memorial Museum has nearly 1800 primary types and a further 1811 paratypes and paralectotypes types in its collections. The majority are molluscan and this second part of a catalogue of these collections reviews the types for 14 chiton and two scaphopod species. It deals with seven primary types and 12 secondary type lots, which are split between 12 Recent taxa and four fossil taxa. All of the holotypes reviewed here have been illustrated. KEYWORDS Auckland Museum, name–bearing types, Mollusca, Polyplacophora, Scaphopoda. INTRODUCTION Iredale & Mestayer 1908; Webster 1908; Ashby 1926; Finlay 1926; Laws 1932). Each would have drawn on The Marine Department of Auckland War Memorial the expertise of the others despite living widely apart. Museum (AWMM) holds nearly 1800 lots of name– As chance would have it, four of the seven – Ashby, bearing primary types, in the form of holotypes, neotypes, Iredale, Mestayer and Webster – were born in England syntypes and lectotypes, and a further 1811 iconotypes, before moving to Australia or New Zealand, or both. paratypes and paralectotypes. These are spread across E. (Edwin) Ashby (1861–1941) was born in several phyla, but the great majority are Mollusca. They England and for health reasons moved to South Australia include terrestrial as well as marine species, and fossil as as a young man, where he became an estate agent well as extant taxa. and naturalist. He collected flowering plants, birds, Auckland Museum’s first list of biological primary and insects, but was particularly interested in Recent types, which included the molluscs, was published by and fossil chitons on which he published 60 papers Powell (1941) and he followed this with a supplement (Winckworth 1942). -
Chitons (Mollusca: Polyplacophora) Known from Benthic Monitoring Programs in the Southern California Bight
ISSN 0738-9388 THE FESTIVUS A publication of the San Diego Shell Club Volume XLI Special Issue June 11, 2009 Chitons (Mollusca: Polyplacophora) Known from Benthic Monitoring Programs in the Southern California Bight Timothy D. Stebbins and Douglas J. Eernisse COVER PHOTO Live specimen of Lepidozona sp. C occurring on a piece of metal debris collected off San Diego, southern California at a depth of 90 m. Photo provided courtesy of R. Rowe. Vol. XLI(6): 2009 THE FESTIVUS Page 53 CHITONS (MOLLUSCA: POLYPLACOPHORA) KNOWN FROM BENTHIC MONITORING PROGRAMS IN THE SOUTHERN CALIFORNIA BIGHT TIMOTHY D. STEBBINS 1,* and DOUGLAS J. EERNISSE 2 1 City of San Diego Marine Biology Laboratory, Metropolitan Wastewater Department, San Diego, CA, USA 2 Department of Biological Science, California State University, Fullerton, CA, USA Abstract: About 36 species of chitons possibly occur at depths greater than 30 m along the continental shelf and slope of the Southern California Bight (SCB), although little is known about their distribution or ecology. Nineteen species are reported here based on chitons collected as part of long-term, local benthic monitoring programs or less frequent region-wide surveys of the entire SCB, and these show little overlap with species that occur at depths typically encountered by scuba divers. Most chitons were collected between 30-305 m depths, although records are included for a few from slightly shallower waters. Of the two extant chiton lineages, Lepidopleurida is represented by Leptochitonidae (2 genera, 3 species), while Chitonida is represented by Ischnochitonidae (2 genera, 6-9 species) and Mopaliidae (4 genera, 7 species). -
Mollusca, Polyplacophora) Movement Behaviour, with Comparison Between Habitats Differing in Complexity
The first observations of Ischnochiton (Mollusca, Polyplacophora) movement behaviour, with comparison between habitats differing in complexity Kiran Liversage1 and Kirsten Benkendorff2 1 Estonian Marine Institute, University of Tartu, Tallinn, Estonia 2 Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia ABSTRACT Most species of Ischnochiton are habitat specialists and are almost always found underneath unstable marine hard-substrata such as boulders. The difficulty of experimenting on these chitons without causing disturbance means little is known about their ecology despite their importance as a group that often contributes greatly to coastal species diversity. In the present study we measured among-boulder distributional patterns of Ischnochiton smaragdinus, and used time-lapse photography to quantify movement behaviours within different habitat types (pebble substrata and rock-platform). In intertidal rock-pools in South Australia, I. smaragdinus were significantly overdispersed among boulders, as most boulders had few individuals but a small proportion harboured large populations. I. smaragdinus individuals emerge from underneath boulders during nocturnal low-tides and move amongst the inter-boulder matrix (pebbles or rock-platform). Seventy-two percent of chitons in the pebble matrix did not move from one pebble to another within the periods of observation (55–130 min) but a small proportion moved across as many as five pebbles per hour, indicating a capacity for adults to migrate among disconnected habitat -
Marine Shells of the Western Coast of Flordia
wm :iii! mm ilili ! Sfixing cHdL J^oad .Sandivicl'i, j\{ai.i.ach.u±£.tti. icuxucm \^*^£ FRONTISPIECE Photo by Ruth Bernhard Spondylus americanus Hermann MARINE SHELLS f>4 OF THE WESTERN COAST OF FLORIDA By LOUISE M. PERRY AND JEANNE S. SCHWENGEL With Revisions and Additions to Louise M. Perry's Marine Shells of the Southwest Coast of Florida Illustrations by W. Hammersley Southwick, Axel A. Olsson, and Frank White March, 1955 PALEONTOLOGICAL RESEARCH INSTITUTION ITHACA, NEW YORK U. S. A. MARINE SHELLS OF THE SOUTHWEST COAST OF FLORIDA printed as Bulletins of American Paleontology, vol. 26, No. 95 First printing, 1940 Second printing, 1942 Copyright, 1955, by Paleontological Research Institution Library of Congress Catalog Card Number: 5-^-12005 Printed in the United States of America // is perhaps a more fortunate destiny to have a taste for collecting shells than to be born a millionaire. Robert Louis Stevenson imeters 50 lllllllllllllllllllllllllllll II II III nil 2 Inches CONTENTS Page Preface by reviser 7 Foreword by Wm. J. Clench 9 Introduction 11 Generalia 13 Collection and preparation of specimens 17 Systematic descriptions 24 Class Amphineura :. 24 Class Pelecypoda 27 Class Scaphopoda 97 Class Gasteropoda 101 Plates 199 Index 311 PREFACE BY THE REVISER It has been a privilege to revise Louise M. Perry's fine book on "Marine Shells of Southwest Florida", to include her studies on eggs and larvae of mollusks; and to add descriptions and illustra- tions of several newly discovered shells thus making it a more com- prehensive study of the molluscan life of western Florida. The work that I have done is only a small return to Dr. -
GUMBOOT CHITON Cryptochiton Stelleri Middendorff, 1846 (Acanthochitonidae)
GUMBOOT CHITON Cryptochiton stelleri Middendorff, 1846 (Acanthochitonidae) Global rank G5 (26Jun2006) State rank S5 (26Jun2006) State rank reasons Overall population and trends unknown, but the species is considered locally abundant and widespread in coastal areas. Threatened by human harvest; low recruitment rates make the species vulnerable to overharvest. There is also concern about contamination as a result of individuals are rarely observed (MacGinitie and coastal development and oil spills and the MacGinitie 1968). potential effects of climatic warming. Ecology TaxonomyRecent work by Okusu et al. (2003) Very few predators; they include the lurid places the genus Cryptochiton in a subclade rocksnail (Ocinebrina lurida), tidepool sculpin within the Acanthochitonina along with Tonicella, (Oligocottus maculosus), river otter (Lontra Mopalia, and Katharina, based on genetic and canadensis; O’Clair and O’Clair 1998) and the morphological similarities. large asteroid (Pycnopodia helianthoides; Yates 1989). A traditional source of food for humans, General description but the meat is very tough (Harbo 1997, O’Clair The largest chiton in the world, up to 33 cm long. and O’Clair 1998). The purple urchin In Southeast Alaska, typically smaller, about 15 (Strongylocentrotus purpuratus) and red urchin cm (Yates 1989, O’Clair and O’Clair 1998). (S. franciscanus) may compete with the gumboot Species is unique among chitons because all chiton for space and food (Yates 1989). May be eight plates are completely concealed by the an indirect commensal to coralline algae by thick and leathery reddish brown or brown mantle eating the fleshy red algae that grows on its (Field and Field 1999, Cowles 2005). The surface and reducing the negative effects of underside is yellow or orange, with a broad foot algae overgrowth (Yates 1989). -
Mollusca: Polyplacophora
Revista de Biología Marina y Oceanografía Vol. 53, N°1: 19-26, abril 2018 http://dx.doi.org/10.4067/S0718-19572018000100019 ARTÍCULO Variaciones estacionales de la comunidad de quitones (Mollusca: Polyplacophora) en una zona intermareal rocosa del sur del Golfo de México Seasonal variations of the chiton community structure (Mollusca: Polyplacophora) in a rocky intertidal shore from the southern Gulf of Mexico Laura Sanvicente-Añorve1*, Rodrigo Rodríguez-Vázquez2, Elia Lemus-Santana2, Miguel Alatorre-Mendieta1 y Martha Reguero1 1Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Delegación Coyoacán, 04510 Ciudad de México, México. *Autor para correspondencia: [email protected] 2Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Delegación Coyoacán, 04510 Ciudad de México, México Abstract.- The southern Gulf of Mexico is typically a coastal plain where rocky shores are scattered distributed. The goal of this study was to compare the chiton community structure of the rocky shore of Montepío during the dry and ‘nortes’ (stormy) weather periods, and to gather data on the relative growth of the dominant species. Sampling was carried out along a transect of 100 x 2 m in the intertidal zone and 83 individuals were collected. Six species were identified: Lepidochitona rosea, Chaetopleura apiculata, Ischnochiton kaasi, Lepidochitona pseudoliozonis, Lepidochitona liozonis and Acanthochitona andersoni. Species richness (S= 4) and Shannon diversity (1.36 and 1.29 bits ind-1 in dry and stormy seasons) were very similar between the 2 seasons; however, only 2 species occurred in both periods, suggesting a strong seasonal exchange of species (50%). -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Memoirs of the National Museum of Victoria 31
^MEMOIRS of the NATIONAL I MUSEUM of VICTORIA 18 May 1970 %^ Registered at the G.P.O., Me MEMOIRS of the NATIONAL MUSEUM OF VICTORIA MELBOURNE AUSTRALIA No. 31 Director J. McNally Deputy Director and Editor Edmund D. Gill PUBLISHED BY ORDER OF THE TRUSTEES 18 MAY 1970 NATIONAL MUSEUM OF VICTORIA Trustees Sir Robert Blackwood, MCE BEE FIE Aust (Chairman) Henry G. A. Osborne, BAgrSc (Deputy Chairman) James C. F. Wharton, BSc (Treasurer) Professor E. S. Hills, PhD (Lond) Hon DSc (Dunelm) DSc FIC FAA FRS Professor S. Sunderland, CMG MD BS DSc FRACP FRACS FAA The Hon. Sir Alistair Adam, MA LLM Sir Henry Somerset, CBE MSc FRACI MAIMM W. L. Drew, Secretary to Trustees Staff Director: John McNally, ED MSc Deputy Director: Edmund D. Gill, BA BD FGS FRGS Administration: A. G. Parsons (in charge) D. E. Quinn E. J. Peat G. H. Russell Patricia Rogers Nancie Wortley Gwenda Bloom Scientific Staff Geology and Palaeontology: Curator of Fossils: T. A. Darragh, MSc DipEd Curator of Minerals: A. W. Beasley, MSc PhD DIC Assistant Curator of Fossils: K. N. Bell, BSc DipEd Assistant: R. J. Evans Vertebrate Zoology: BSc (Hons) Curator of Vertebrates : Joan M. Dixon, Curator of Birds: A. R. McEvey, BA Assistant: A. J. Coventry Invertebrate Zoology: Curator of Insects: A. Neboiss, MSc FRES Curator of Invertebrates: B. J. Smith, BSc PhD Assistants: Elizabeth M. Matheson Ryllis J. Plant Anthropology: Curator of Anthropology: A. L. West, BA Dip Soc Stud Assistant: J. A. S. Holman Library: Librarian: Joyce M. Shaw, BA Assistant: Margret A. Stam, DipFDP Display and Preparation Staff: G. -
First Findings of the Rare Chiton Acanthochitona Leopoldi (Mollusca
ZOOSYSTEMATICA ROSSICA ISSN 2410-0226 Zoological Institute, Russian Academy of Sciences, St Petersburg ▪ https://www.zin.ru/journals/zsr/ [ onl ine] 0320-9180 Vol. 29(1): 93–100 ▪ Published online 12 June 2020 ▪ DOI 10.31610/zsr/2020.29.1.93 [ print] RESEARCH ARTICLE First findings of the rare chiton Acanthochitona leopoldi (Mollusca: Polyplacophora) in the South China Sea Первые находки редкого хитона Acanthochitona leopoldi (Mollusca: Polyplacophora) в Южно-Китайском море B.I. Sirenko & T. Nguyen Tai Б.И. Сиренко, Т. Нгуен Тай Boris I. Sirenko, Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya Emb., St Petersburg, 199034, Russia. E-mail: [email protected] Tu Nguyen Tai, Joint Russian–Vietnamese Tropical Research and Technological Center, 63 Nguyen Van Huyen Road, Nghia Do, Cau Giay, Hanoi, Vietnam. E-mail: [email protected] Abstract. The rare chiton Acanthochitona leopoldi (Leloup, 1933) is recorded for the first time from the Spratly Islands (Truong Sa), Vietnam. The species is redescribed based on the scanning electron micro- scope examination of the recently collected specimens. Age variability of the shell, radula and perinotum of this species is also given. Резюме. Редкий вид хитонов Acanthochitona leopoldi (Leloup, 1933) впервые зарегистрирован у островов Спратли (Чыонг Ша), Вьетнам. Дано переописание этого вида на основе электронно- микроскопического изучения собранных экземпляров. Представлена также возрастная изменчивость раковины, радулы и перинотума этого вида. Key words: chitons, redescription, age variability, South China Sea, Spratly Islands, Acanthochitonidae, Acanthochitona Ключевые слова: хитоны, переописание, возрастная изменчивость, Южно-Китайское море, острова Спратли, Acanthochitonidae, Acanthochitona Zoobank Article LSID: urn:lsid:zoobank.org:pub:7723201B-6228-41FD-8C8C-F5454A275670 Introduction ogy Centre organised two marine expeditions to the southern part of the South China Sea. -
Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶǡͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al. -
Description of a New Species Ischnochiton Dolii Sp. Nov. (Polyplacophora: Ischnochitonidae) from Civitavecchia, Italy
VAN BELLE & DELL'ANGELO New species of Ischnochitonidae APEX 13(1-2): 77-79,20 avr. 1998 Description of a new species Ischnochiton dolii sp. nov. (Polyplacophora: Ischnochitonidae) from Civitavecchia, Italy Richard A. VAN BELLE^ and Bruno DELL'ANGELO^ ' Scientific Collaborator, Koninklijk Belgisch Instituut voor Natimrwetenschappen, Vautierstraat 29, B-1000 Brussels, Belgium ^ Via Mugellese 66D, 59100 Prato, Italy KEYWORDS. Polyplacophora, Ischnochitonidae, Ischnochiton dolii sp. nov., Italy. ABSTRACT. Ischnochiton dolii sp. nov. is described. It is compared with all recent Mediterranean and northeastern Atlantic Ischnochiton species, and with the European fossil species from the Pliocene and the Miocene. RESUME. Ischnochiton dolii sp. nov. est décrit et comparé à tous les Ischnochiton récents de la Méditerranée et du nord-est de l'Océan Atlantique, et aux espèces fossiles européeimes du Pliocène et du Miocène. INTRODUCTION valves, reg. no IG 28523), Museum National d'Histoire Naturelle, Paris (3 valves), R. Ardovini coll. (138 On June 1991, a Roman jar (=dolium ; IV century valves), F. Giovini coll. (80 valves), B. Dell'Angelo B.C.) was found in the Tyrrhenian Sea, off coll. (90 valves, reg. no P151F/01), R.A. Van Belle Civitavecchia, at a depth of 550 meters (Tringali & coll. (12 valves, reg. no F1003a). Ardovini, 1993). In the muddy contents 333 valves (69 head, 228 intermediate and 36 tail) were found of a Tuscan Archipelago, -70/100 m : 1 intermediate possibly subfossil Polyplacophora species which valve, 2.2 x 5.5 mm (B. Dell'Angelo coll. reg. no proved to be new to science. LI 5/01). Type locality. Tyrrhenian Sea, off Civitavecchia, Italy, -550 m. -
Invertebrate ID Guide
11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................