Paper PO06 Randomization in Clinical Trial Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
When Does Blocking Help?
page 1 When Does Blocking Help? Teacher Notes, Part I The purpose of blocking is frequently described as “reducing variability.” However, this phrase carries little meaning to most beginning students of statistics. This activity, consisting of three rounds of simulation, is designed to illustrate what reducing variability really means in this context. In fact, students should see that a better description than “reducing variability” might be “attributing variability”, or “reducing unexplained variability”. The activity can be completed in a single 90-minute class or two classes of at least 45 minutes. For shorter classes you may wish to extend the simulations over two days. It is important that students understand not only what to do but also why they do what they do. Background Here is the specific problem that will be addressed in this activity: A set of 24 dogs (6 of each of four breeds; 6 from each of four veterinary clinics) has been randomly selected from a population of dogs older than eight years of age whose owners have permitted their inclusion in a study. Each dog will be assigned to exactly one of three treatment groups. Group “Ca” will receive a dietary supplement of calcium, Group “Ex” will receive a dietary supplement of calcium and a daily exercise regimen, and Group “Co” will be a control group that receives no supplement to the ordinary diet and no additional exercise. All dogs will have a bone density evaluation at the beginning and end of the one-year study. (The bone density is measured in Houndsfield units by using a CT scan.) The goals of the study are to determine (i) whether there are different changes in bone density over the year of the study for the dogs in the three treatment groups; and if so, (ii) how much each treatment influences that change in bone density. -
Lec 9: Blocking and Confounding for 2K Factorial Design
Lec 9: Blocking and Confounding for 2k Factorial Design Ying Li December 2, 2011 Ying Li Lec 9: Blocking and Confounding for 2k Factorial Design 2k factorial design Special case of the general factorial design; k factors, all at two levels The two levels are usually called low and high (they could be either quantitative or qualitative) Very widely used in industrial experimentation Ying Li Lec 9: Blocking and Confounding for 2k Factorial Design Example Consider an investigation into the effect of the concentration of the reactant and the amount of the catalyst on the conversion in a chemical process. A: reactant concentration, 2 levels B: catalyst, 2 levels 3 replicates, 12 runs in total Ying Li Lec 9: Blocking and Confounding for 2k Factorial Design 1 A B A = f[ab − b] + [a − (1)]g − − (1) = 28 + 25 + 27 = 80 2n + − a = 36 + 32 + 32 = 100 1 B = f[ab − a] + [b − (1)]g − + b = 18 + 19 + 23 = 60 2n + + ab = 31 + 30 + 29 = 90 1 AB = f[ab − b] − [a − (1)]g 2n Ying Li Lec 9: Blocking and Confounding for 2k Factorial Design Manual Calculation 1 A = f[ab − b] + [a − (1)]g 2n ContrastA = ab + a − b − (1) Contrast SS = A A 4n Ying Li Lec 9: Blocking and Confounding for 2k Factorial Design Regression Model For 22 × 1 experiment Ying Li Lec 9: Blocking and Confounding for 2k Factorial Design Regression Model The least square estimates: The regression coefficient estimates are exactly half of the \usual" effect estimates Ying Li Lec 9: Blocking and Confounding for 2k Factorial Design Analysis Procedure for a Factorial Design Estimate factor effects. -
Appendix B. Random Number Tables
Appendix B. Random Number Tables Reproduced from Million Random Digits, used with permission of the Rand Corporation, Copyright, 1955, The Free Press. The publication is available for free on the Internet at http://www.rand.org/publications/classics/randomdigits. All of the sampling plans presented in this handbook are based on the assumption that the packages constituting the sample are chosen at random from the inspection lot. Randomness in this instance means that every package in the lot has an equal chance of being selected as part of the sample. It does not matter what other packages have already been chosen, what the package net contents are, or where the package is located in the lot. To obtain a random sample, two steps are necessary. First it is necessary to identify each package in the lot of packages with a specific number whether on the shelf, in the warehouse, or coming off the packaging line. Then it is necessary to obtain a series of random numbers. These random numbers indicate exactly which packages in the lot shall be taken for the sample. The Random Number Table The random number tables in Appendix B are composed of the digits from 0 through 9, with approximately equal frequency of occurrence. This appendix consists of 8 pages. On each page digits are printed in blocks of five columns and blocks of five rows. The printing of the table in blocks is intended only to make it easier to locate specific columns and rows. Random Starting Place Starting Page. The Random Digit pages numbered B-2 through B-8. -
Chapter 7 Blocking and Confounding Systems for Two-Level Factorials
Chapter 7 Blocking and Confounding Systems for Two-Level Factorials &5² Design and Analysis of Experiments (Douglas C. Montgomery) hsuhl (NUK) DAE Chap. 7 1 / 28 Introduction Sometimes, it is impossible to perform all 2k factorial experiments under homogeneous condition. I a batch of raw material: not large enough for the required runs Blocking technique: making the treatments are equally effective across many situation hsuhl (NUK) DAE Chap. 7 2 / 28 Blocking a Replicated 2k Factorial Design 2k factorial design, n replicates Example 7.1: chemical process experiment 22 factorial design: A-concentration; B-catalyst 4 trials; 3 replicates hsuhl (NUK) DAE Chap. 7 3 / 28 Blocking a Replicated 2k Factorial Design (cont.) n replicates a block: each set of nonhomogeneous conditions each replicate is run in one of the blocks 3 2 2 X Bi y··· SSBlocks= − (2 d:f :) 4 12 i=1 = 6:50 The block effect is small. hsuhl (NUK) DAE Chap. 7 4 / 28 Confounding Confounding(干W;混雜;ø絡) the block size is smaller than the number of treatment combinations impossible to perform a complete replicate of a factorial design in one block confounding: a design technique for arranging a complete factorial experiment in blocks causes information about certain treatment effects(high-order interactions) to be indistinguishable(p|辨½的) from, or confounded with blocks hsuhl (NUK) DAE Chap. 7 5 / 28 Confounding the 2k Factorial Design in Two Blocks a single replicate of 22 design two batches of raw material are required 2 factors with 2 blocks hsuhl (NUK) DAE Chap. 7 6 / 28 Confounding the 2k Factorial Design in Two Blocks (cont.) 1 A = 2 [ab + a − b−(1)] 1 (any difference between block 1 and 2 will cancel out) B = 2 [ab + b − a−(1)] 1 AB = [ab+(1) − a − b] 2 (block effect and AB interaction are identical; confounded with blocks) hsuhl (NUK) DAE Chap. -
Introduction to Biostatistics
Introduction to Biostatistics Jie Yang, Ph.D. Associate Professor Department of Family, Population and Preventive Medicine Director Biostatistical Consulting Core In collaboration with Clinical Translational Science Center (CTSC) and the Biostatistics and Bioinformatics Shared Resource (BB-SR), Stony Brook Cancer Center (SBCC). OUTLINE What is Biostatistics What does a biostatistician do • Experiment design, clinical trial design • Descriptive and Inferential analysis • Result interpretation What you should bring while consulting with a biostatistician WHAT IS BIOSTATISTICS • The science of biostatistics encompasses the design of biological/clinical experiments the collection, summarization, and analysis of data from those experiments the interpretation of, and inference from, the results How to Lie with Statistics (1954) by Darrell Huff. http://www.youtube.com/watch?v=PbODigCZqL8 GOAL OF STATISTICS Sampling POPULATION Probability SAMPLE Theory Descriptive Descriptive Statistics Statistics Inference Population Sample Parameters: Inferential Statistics Statistics: 흁, 흈, 흅… 푿 , 풔, 풑 ,… PROPERTIES OF A “GOOD” SAMPLE • Adequate sample size (statistical power) • Random selection (representative) Sampling Techniques: 1.Simple random sampling 2.Stratified sampling 3.Systematic sampling 4.Cluster sampling 5.Convenience sampling STUDY DESIGN EXPERIEMENT DESIGN Completely Randomized Design (CRD) - Randomly assign the experiment units to the treatments Design with Blocking – dealing with nuisance factor which has some effect on the response, but of no interest to the experimenter; Without blocking, large unexplained error leads to less detection power. 1. Randomized Complete Block Design (RCBD) - One single blocking factor 2. Latin Square 3. Cross over Design Design (two (each subject=blocking factor) 4. Balanced Incomplete blocking factor) Block Design EXPERIMENT DESIGN Factorial Design: similar to randomized block design, but allowing to test the interaction between two treatment effects. -
Effects of a Prescribed Fire on Oak Woodland Stand Structure1
Effects of a Prescribed Fire on Oak Woodland Stand Structure1 Danny L. Fry2 Abstract Fire damage and tree characteristics of mixed deciduous oak woodlands were recorded after a prescription burn in the summer of 1999 on Mt. Hamilton Range, Santa Clara County, California. Trees were tagged and monitored to determine the effects of fire intensity on damage, recovery and survivorship. Fire-caused mortality was low; 2-year post-burn survey indicates that only three oaks have died from the low intensity ground fire. Using ANOVA, there was an overall significant difference for percent tree crown scorched and bole char height between plots, but not between tree-size classes. Using logistic regression, tree diameter and aspect predicted crown resprouting. Crown damage was also a significant predictor of resprouting with the likelihood increasing with percent scorched. Both valley and blue oaks produced crown resprouts on trees with 100 percent of their crown scorched. Although overall tree damage was low, crown resprouts developed on 80 percent of the trees and were found as shortly as two weeks after the fire. Stand structural characteristics have not been altered substantially by the event. Long term monitoring of fire effects will provide information on what changes fire causes to stand structure, its possible usefulness as a management tool, and how it should be applied to the landscape to achieve management objectives. Introduction Numerous studies have focused on the effects of human land use practices on oak woodland stand structure and regeneration. Studies examining stand structure in oak woodlands have shown either persistence or strong recruitment following fire (McClaran and Bartolome 1989, Mensing 1992). -
Call Numbers
Call numbers: It is our recommendation that libraries NOT put J, +, E, Ref, etc. in the call number field in front of the Dewey or other call number. Use the Home Location field to indicate the collection for the item. It is difficult if not impossible to sort lists if the call number fields aren’t entered systematically. Dewey Call Numbers for Non-Fiction Each library follows its own practice for how long a Dewey number they use and what letters are used for the author’s name. Some libraries use a number (Cutter number from a table) after the letters for the author’s name. Other just use letters for the author’s name. Call Numbers for Fiction For fiction, the call number is usually the author’s Last Name, First Name. (Use a comma between last and first name.) It is usually already in the call number field when you barcode. Call Numbers for Paperbacks Each library follows its own practice. Just be consistent for easier handling of the weeding lists. WCTS libraries should follow the format used by WCTS for the items processed by them for your library. Most call numbers are either the author’s name or just the first letters of the author’s last name. Please DO catalog your paperbacks so they can be shared with other libraries. Call Numbers for Magazines To get the call numbers to display in the correct order by date, the call number needs to begin with the date of the issue in a number format, followed by the issue in alphanumeric format. -
Stratification Trees for Adaptive Randomization in Randomized
Stratification Trees for Adaptive Randomization in Randomized Controlled Trials Max Tabord-Meehan Department of Economics Northwestern University [email protected] ⇤ (Click here for most recent version) 26th October 2018 Abstract This paper proposes an adaptive randomization procedure for two-stage randomized con- trolled trials. The method uses data from a first-wave experiment in order to determine how to stratify in a second wave of the experiment, where the objective is to minimize the variance of an estimator for the average treatment e↵ect (ATE). We consider selection from a class of stratified randomization procedures which we call stratification trees: these are procedures whose strata can be represented as decision trees, with di↵ering treatment assignment probabilities across strata. By using the first wave to estimate a stratification tree, we simultaneously select which covariates to use for stratification, how to stratify over these covariates, as well as the assign- ment probabilities within these strata. Our main result shows that using this randomization procedure with an appropriate estimator results in an asymptotic variance which minimizes the variance bound for estimating the ATE, over an optimal stratification of the covariate space. Moreover, by extending techniques developed in Bugni et al. (2018), the results we present are able to accommodate a large class of assignment mechanisms within strata, including stratified block randomization. We also present extensions of the procedure to the setting of multiple treatments, and to the targeting of subgroup-specific e↵ects. In a simulation study, we find that our method is most e↵ective when the response model exhibits some amount of “sparsity” with respect to the covariates, but can be e↵ective in other contexts as well, as long as the first-wave sample size used to estimate the stratification tree is not prohibitively small. -
Pragmatic Cluster Randomized Trials Using Covariate Constrained Randomization: a Method for Practice-Based Research Networks (Pbrns)
SPECIAL COMMUNICATION Pragmatic Cluster Randomized Trials Using Covariate Constrained Randomization: A Method for Practice-based Research Networks (PBRNs) L. Miriam Dickinson, PhD, Brenda Beaty, MSPH, Chet Fox, MD, Wilson Pace, MD, W. Perry Dickinson, MD, Caroline Emsermann, MS, and Allison Kempe, MD, MPH Background: Cluster randomized trials (CRTs) are useful in practice-based research network transla- tional research. However, simple or stratified randomization often yields study groups that differ on key baseline variables when the number of clusters is small. Unbalanced study arms constitute a potentially serious methodological problem for CRTs. Methods: Covariate constrained randomization with data on relevant variables before randomization was used to achieve balanced study arms in 2 pragmatic CRTs. In study 1, 16 counties in Colorado were randomized to practice-based or population-based reminder recall for vaccinating children ages 19 to 35 months. In study 2, 18 primary care practices were randomized to computer decision support plus practice facilitation versus computer decision support alone to improve care for patients with stage 3 and 4 chronic kidney disease. For each study, a set of optimal randomizations, which minimized differ- ences of key variables between study arms, was identified from the set of all possible randomizations. Results: Differences between study arms were smaller in the optimal versus remaining randomiza- tions. Even for the randomization in the optimal set with the largest difference between groups, study arms did not differ significantly on any variable for either study (P > .05). Conclusions: Covariate constrained randomization, which restricts the full randomization set to a subset in which differences between study arms are minimized, is a useful tool for achieving balanced study arms in CRTs. -
Girls' Elite 2 0 2 0 - 2 1 S E a S O N by the Numbers
GIRLS' ELITE 2 0 2 0 - 2 1 S E A S O N BY THE NUMBERS COMPARING NORMAL SEASON TO 2020-21 NORMAL 2020-21 SEASON SEASON SEASON LENGTH SEASON LENGTH 6.5 Months; Dec - Jun 6.5 Months, Split Season The 2020-21 Season will be split into two segments running from mid-September through mid-February, taking a break for the IHSA season, and then returning May through mid- June. The season length is virtually the exact same amount of time as previous years. TRAINING PROGRAM TRAINING PROGRAM 25 Weeks; 157 Hours 25 Weeks; 156 Hours The training hours for the 2020-21 season are nearly exact to last season's plan. The training hours do not include 16 additional in-house scrimmage hours on the weekends Sep-Dec. Courtney DeBolt-Slinko returns as our Technical Director. 4 new courts this season. STRENGTH PROGRAM STRENGTH PROGRAM 3 Days/Week; 72 Hours 3 Days/Week; 76 Hours Similar to the Training Time, the 2020-21 schedule will actually allow for a 4 additional hours at Oak Strength in our Sparta Science Strength & Conditioning program. These hours are in addition to the volleyball-specific Training Time. Oak Strength is expanding by 8,800 sq. ft. RECRUITING SUPPORT RECRUITING SUPPORT Full Season Enhanced Full Season In response to the recruiting challenges created by the pandemic, we are ADDING livestreaming/recording of scrimmages and scheduled in-person visits from Lauren, Mikaela or Peter. This is in addition to our normal support services throughout the season. TOURNAMENT DATES TOURNAMENT DATES 24-28 Dates; 10-12 Events TBD Dates; TBD Events We are preparing for 15 Dates/6 Events Dec-Feb. -
Random Allocation in Controlled Clinical Trials: a Review
J Pharm Pharm Sci (www.cspsCanada.org) 17(2) 248 - 253, 2014 Random Allocation in Controlled Clinical Trials: A Review Bolaji Emmanuel Egbewale Department of Community Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria Received, February 16, 2014; Revised, May 23, 2014; Accepted, May 30, 2014; Published, June 2, 2014. ABSTRACT- PURPOSE: An allocation strategy that allows for chance placement of participants to study groups is crucial to the experimental nature of randomised controlled trials. Following decades of the discovery of randomisation considerable erroneous opinion and misrepresentations of its concept both in principle and practice still exists. In some circles, opinions are also divided on the strength and weaknesses of each of the random allocation strategies. This review provides an update on various random allocation techniques so as to correct existing misconceptions on this all important procedure. METHODS: This is a review of literatures published in the Pubmed database on concepts of common allocation techniques used in controlled clinical trials. RESULTS: Allocation methods that use; case record number, date of birth, date of presentation, haphazard or alternating assignment are non-random allocation techniques and should not be confused as random methods. Four main random allocation techniques were identified. Minimisation procedure though not fully a random technique, however, proffers solution to the limitations of stratification at balancing for multiple prognostic factors, as the procedure makes treatment groups similar in several important features even in small sample trials. CONCLUSIONS: Even though generation of allocation sequence by simple randomisation procedure is easily facilitated, a major drawback of the technique is that treatment groups can by chance end up being dissimilar both in size and composition of prognostic factors. -
Analysis of Variance and Analysis of Variance and Design of Experiments of Experiments-I
Analysis of Variance and Design of Experimentseriments--II MODULE ––IVIV LECTURE - 19 EXPERIMENTAL DESIGNS AND THEIR ANALYSIS Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 2 Design of experiment means how to design an experiment in the sense that how the observations or measurements should be obtained to answer a qqyuery inavalid, efficient and economical way. The desigggning of experiment and the analysis of obtained data are inseparable. If the experiment is designed properly keeping in mind the question, then the data generated is valid and proper analysis of data provides the valid statistical inferences. If the experiment is not well designed, the validity of the statistical inferences is questionable and may be invalid. It is important to understand first the basic terminologies used in the experimental design. Experimental unit For conducting an experiment, the experimental material is divided into smaller parts and each part is referred to as experimental unit. The experimental unit is randomly assigned to a treatment. The phrase “randomly assigned” is very important in this definition. Experiment A way of getting an answer to a question which the experimenter wants to know. Treatment Different objects or procedures which are to be compared in an experiment are called treatments. Sampling unit The object that is measured in an experiment is called the sampling unit. This may be different from the experimental unit. 3 Factor A factor is a variable defining a categorization. A factor can be fixed or random in nature. • A factor is termed as fixed factor if all the levels of interest are included in the experiment.