Zoologische Mededelingen

Total Page:16

File Type:pdf, Size:1020Kb

Zoologische Mededelingen Zoologische Mededelingen September 2011 ;e naturalis 85 Contents De Grave, S. & C.HJ.M. Fransen Carideorum catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustácea: Decapoda) 195- Cover: Periclimenneus schnitti Holthuis, 1951. Photo by Arthur Anker. Carideorum Catalogas: The Recent Species of the Dendrobranchiate, Stenopodidean, Procarididean and Caridean Shrimps (Crustácea: Decapoda) S. De Grave & C.H.J.M. Fransen* De Grave, S. & C.H.J.M. Fransen. Carideorum catalogus: the recent species of the dendrobranchíate, stenopodídean, procarididean and caridean shrimps (Crustácea: Decapoda). Zool. Med. Leiden 85(9): 30.ix.2011:195-589 figs 1-59.- ISSN 0024-0672, ISBN 978-90-6519-200-4. S. De Grave, Oxford University Mtiseum of Natural Hisíory, Parks Road, Oxford, OX1 3PW, United Kingdom ([email protected]). C.H.J.M. Fransen, Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, P.O. Box 9517, 2300 RA Leiden, The Netherlands ([email protected]). * The order of authorship is purely alphabetical, with both authors having equally contributed to this work. Key words: Crustácea; Decapoda; Dendrobranchiata; Stenopodidea; Procarididea; Caridea; checklist. A checklist of recent species of dendrobranchiate, stenopodidean, procarididean and caridean shrimps including synoiiyms and type localities. Also listed are unavailable ñames, larval ñames, nomina dubia and nomina nuda. A complete list of references to original descriptions of taxa usted is províded. Con ten ts Introducción 196 The higher classiñcation of shrimp 196 Fossiltaxa 197 How many shrimp species are there? 197 Structure of the list 197 Notes on type locality 199 Notes on dating of some papers 200 Notes on author ñames 201 Notes on authorship of taxa 202 Notes on some papers of nomenclatorial significance 203 Notes on the spelling of some ñames 204 Notes on the gender of generic ñames and gender agreement in species ñames 204 Acknowledgements 205 Checklist 206 Suborder Dendrobranchiata 206 Suborder Pleocyemata 248 Infraorder Procarididea 248 Infraorder Stenopodidea 249 Infraorder Caridea 254 Unavailable ñames 471 Penaeoidea Larvata 471 Penaeoidea Nomina dubia 471 196 De Grave & Fransen. Carideorum catalogáis (Crustácea: Decapoda). Zool. Med. Leiden 85 (2011) Penaeoidea Nomina nuda 472 Sergestoidea Larvata 472 Sergestoidea Nomina dubia 472 Sergestoidea Nomina nuda 473 Candea Larvata 473 Caridea Nomina dubia 475 Caridea Nomina nada 476 References 478 Systematic Índex to currently valid famili.es and genera 585 Introduction The higher classification of shrimp Over the last decade or so, nuich has been written on the classification of Decapoda, fuelled by a surge in molecular phylogenetic studies, as well as cióse scrutiny of inter- nal and external morphological characteristics. As discussed by Fransen & De Grave (2009), such studies on shrimps are still somewhat "thin on the ground", at least com- pared to the more extensive work done on the Brachyura and Anomura. At a higher level in decapod classiñcation it has long been recognised that three distinct lineages of shrimps can be distinguished: Dendrobranchiata, Stenopodidea and Caridea, a system which has not been seriously challenged by recent studies. The internal classification of Dendrobr anchi ata and Stenopodidea alike has been stable for some time, with the only major addition being the family Macromaxilloca- rididae Alvarez, Iliffe & Villalobos (2006) to the Stenopodidea in recent years. A different picture has emerged for Caridea very recently with Bracken et al. (2009) and Chan et al. (2010), both drawing attention to the non-monophyletic status of certain superfainilies and families. Further, we are aware of work currently in progress (some by the authors of this compilation) corroborating the hypothesis that the current clas- sification of Caridea is unnatural, lines of study which vvill lead to the resurrection of certain family ñames as well as further refinemeiit to other families. As one of our objec- tives for the current effort was to link this compilation of species level informatíon with the earlier work by Chace (1992) for families and Holthuis (1993a) for genera, we have elected to largely follow the classification outlined by De Grave et al. (2009) which builds upon this earlier work. As such, it was deemed advisable to include the recently resurrected family Acanthephyridae Spence Bate, 1888 in the superfamily Oplopho- roidea, rather than in this catalogue to créate a new superfamily, which would perhaps be more congruent with the results in Chan et al. (2010). Although we follow herein the classification scheme of De Grave et al. (2009), two recent changes have been implemented. The clarification of the status of Galatheacaris abyssalis Vereshchaka, 1997a, as the megalopal stage of Eugonatonotus chacei Chan & Yu, 1991a, by De Grave et al. (2010) resulted in the removal of the family Galatheacarididae and superfamily Galatheacaridoidea in the current listing. Bracken et al. (2010) clarified the status of the family Procarididae, resulting in the recognición, of a fourth group of shrimp, Infraorder Procarididea..
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Prawn Fauna (Crustacea: Decapoda) of India - an Annotated Checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean Prawns
    Available online at: www.mbai.org.in doi: 10.6024/jmbai.2012.54.1.01697-08 Prawn fauna (Crustacea: Decapoda) of India - An annotated checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean prawns E. V. Radhakrishnan*1, V. D. Deshmukh2, G. Maheswarudu3, Jose Josileen 1, A. P. Dineshbabu4, K. K. Philipose5, P. T. Sarada6, S. Lakshmi Pillai1, K. N. Saleela7, Rekhadevi Chakraborty1, Gyanaranjan Dash8, C.K. Sajeev1, P. Thirumilu9, B. Sridhara4, Y Muniyappa4, A.D.Sawant2, Narayan G Vaidya5, R. Dias Johny2, J. B. Verma3, P.K.Baby1, C. Unnikrishnan7, 10 11 11 1 7 N. P. Ramachandran , A. Vairamani , A. Palanichamy , M. Radhakrishnan and B. Raju 1CMFRI HQ, Cochin, 2Mumbai RC of CMFRI, 3Visakhapatnam RC of CMFRI, 4Mangalore RC of CMFRI, 5Karwar RC of CMFRI, 6Tuticorin RC of CMFRI, 7Vizhinjam RC of CMFRI, 8Veraval RC of CMFRI, 9Madras RC of CMFRI, 10Calicut RC of CMFRI, 11Mandapam RC of CMFRI *Correspondence e-mail: [email protected] Received: 07 Sep 2011, Accepted: 15 Mar 2012, Published: 30 Apr 2012 Original Article Abstract Many penaeoid prawns are of considerable value for the fishing Introduction industry and aquaculture operations. The annual estimated average landing of prawns from the fishery in India was 3.98 The prawn fauna inhabiting the marine, estuarine and lakh tonnes (2008-10) of which 60% were contributed by freshwater ecosystems of India are diverse and fairly well penaeid prawns. An additional 1.5 lakh tonnes is produced from known. Significant contributions to systematics of marine aquaculture. During 2010-11, India exported US $ 2.8 billion worth marine products, of which shrimp contributed 3.09% in prawns of Indian region were that of Milne Edwards (1837), volume and 69.5% in value of the total export.
    [Show full text]
  • A New Species of Deep-Sea Sponge-Associated Shrimp from the North-West Pacific (Decapoda, Stenopodidea, Spongicolidae)
    A peer-reviewed open-access journal ZooKeys 685: 1–14A new (2017) species of deep-sea sponge-associated shrimp from the North-West Pacific... 1 doi: 10.3897/zookeys.685.11341 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of deep-sea sponge-associated shrimp from the North-West Pacific (Decapoda, Stenopodidea, Spongicolidae) Peng Xu1, Yadong Zhou1, Chunsheng Wang1,2 1 Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Ad- ministration, Hangzhou, 310012, China 2 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China Corresponding author: Chunsheng Wang ([email protected]) Academic editor: I. Wehrtmann | Received 27 November 2016 | Accepted 31 May 2017 | Published 13 July 2017 http://zoobank.org/22713130-2770-47E2-A29D-12C3A9BBB5F6 Citation: Xu P, Zhou Y, Wang C (2017) A new species of deep-sea sponge-associated shrimp from the North-West Pacific (Decapoda, Stenopodidea, Spongicolidae). ZooKeys 685: 1–14.https://doi.org/10.3897/zookeys.685.11341 Abstract A new species of the deep-sea spongicolid genus Spongicoloides Hansen, 1908 is described and illustrated based on material from the northwestern Pacific.Spongicoloides weijiaensis sp. n. was found inside a hex- actinellid sponge, Euplectella sp., sampled by the Chinese manned submersible “Jiaolong” at depths of 2279 m near the Weijia Guyot, in the Magellan Seamount Chain. The new species can be distinguished from all congeneric species by several morphological features, involving gill formula, spination of the cara- pace, antennal scale, third pereiopod, telson and uropod, posteroventral teeth of the pleura, and dactyli of the fourth and fifth pereiopods.
    [Show full text]
  • Systematics, Phylogeny, and Taphonomy of Ghost Shrimps (Decapoda): a Perspective from the Fossil Record
    73 (3): 401 – 437 23.12.2015 © Senckenberg Gesellschaft für Naturforschung, 2015. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record Matúš Hyžný *, 1, 2 & Adiël A. Klompmaker 3 1 Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; Matúš Hyžný [hyzny.matus@ gmail.com] — 2 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SVK-842 15 Bratislava, Slovakia — 3 Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gaines- ville, FL 32611, USA; Adiël A. Klompmaker [[email protected]] — * Correspond ing author Accepted 06.viii.2015. Published online at www.senckenberg.de/arthropod-systematics on 14.xii.2015. Editor in charge: Stefan Richter. Abstract Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Fur- thermore, numerous taxa are incorrectly classified within the catch-all taxonCallianassa . To show the historical patterns in describing fos- sil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein.
    [Show full text]
  • Download-The-Data (Accessed on 12 July 2021))
    diversity Article Integrative Taxonomy of New Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region Kareen E. Schnabel 1,* , Qi Kou 2,3 and Peng Xu 4 1 Coasts and Oceans Centre, National Institute of Water & Atmospheric Research, Private Bag 14901 Kilbirnie, Wellington 6241, New Zealand 2 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 3 College of Marine Science, University of Chinese Academy of Sciences, Beijing 100049, China 4 Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; [email protected] * Correspondence: [email protected]; Tel.: +64-4-386-0862 Abstract: The New Zealand fauna of the crustacean infraorder Stenopodidea, the coral and sponge shrimps, is reviewed using both classical taxonomic and molecular tools. In addition to the three species so far recorded in the region, we report Spongicola goyi for the first time, and formally describe three new species of Spongicolidae. Following the morphological review and DNA sequencing of type specimens, we propose the synonymy of Spongiocaris yaldwyni with S. neocaledonensis and review a proposed broad Indo-West Pacific distribution range of Spongicoloides novaezelandiae. New records for the latter at nearly 54◦ South on the Macquarie Ridge provide the southernmost record for stenopodidean shrimp known to date. Citation: Schnabel, K.E.; Kou, Q.; Xu, Keywords: sponge shrimp; coral cleaner shrimp; taxonomy; cytochrome oxidase 1; 16S ribosomal P. Integrative Taxonomy of New RNA; association; southwest Pacific Ocean Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region.
    [Show full text]
  • De Grave & Fransen. Carideorum Catalogus
    De Grave & Fransen. Carideorum catalogus (Crustacea: Decapoda). Zool. Med. Leiden 85 (2011) 407 Fig. 48. Synalpheus hemphilli Coutière, 1909. Photo by Arthur Anker. Synalpheus iphinoe De Man, 1909a = Synalpheus Iphinoë De Man, 1909a: 116. [8°23'.5S 119°4'.6E, Sapeh-strait, 70 m; Madura-bay and other localities in the southern part of Molo-strait, 54-90 m; Banda-anchorage, 9-36 m; Rumah-ku- da-bay, Roma-island, 36 m] Synalpheus iocasta De Man, 1909a = Synalpheus Iocasta De Man, 1909a: 119. [Makassar and surroundings, up to 32 m; 0°58'.5N 122°42'.5E, west of Kwadang-bay-entrance, 72 m; Anchorage north of Salomakiëe (Damar) is- land, 45 m; 1°42'.5S 130°47'.5E, 32 m; 4°20'S 122°58'E, between islands of Wowoni and Buton, northern entrance of Buton-strait, 75-94 m; Banda-anchorage, 9-36 m; Anchorage off Pulu Jedan, east coast of Aru-islands (Pearl-banks), 13 m; 5°28'.2S 134°53'.9E, 57 m; 8°25'.2S 127°18'.4E, an- chorage between Nusa Besi and the N.E. point of Timor, 27-54 m; 8°39'.1 127°4'.4E, anchorage south coast of Timor, 34 m; Mid-channel in Solor-strait off Kampong Menanga, 113 m; 8°30'S 119°7'.5E, 73 m] Synalpheus irie MacDonald, Hultgren & Duffy, 2009: 25; Figs 11-16; Plate 3C-D. [fore-reef (near M1 chan- nel marker), 18°28.083'N 77°23.289'W, from canals of Auletta cf. sycinularia] Synalpheus jedanensis De Man, 1909a: 117. [Anchorage off Pulu Jedan, east coast of Aru-islands (Pearl- banks), 13 m] Synalpheus kensleyi (Ríos & Duffy, 2007) = Zuzalpheus kensleyi Ríos & Duffy, 2007: 41; Figs 18-22; Plate 3.
    [Show full text]
  • Caridea, Polychelida, Anomura and Brachyura) Collected from the Nikko Seamounts, Mariana Arc, Using a Remotely Operated Vehicle “Hyper-Dolphin”
    Zootaxa 3764 (3): 279–316 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3764.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:F1B0E174-89C5-4A9E-B7DA-C5E27AF624D3 Deep-Sea decapod crustaceans (Caridea, Polychelida, Anomura and Brachyura) collected from the Nikko Seamounts, Mariana Arc, using a remotely operated vehicle “Hyper-Dolphin” TOMOYUKI KOMAI1 & SHINJI TSUCHIDA2 1Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan. E-mail: [email protected] 2Japan Agency of Marine Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061. E-mail: [email protected] Abstract Samples and images of deep-water benthic decapod crustaceans were collected from the Nikko Seamounts, Mariana Arc, at depths of 520–680 m, by using the remotely operate vehicle “Hyper-Dolphin”, equipped with a high definition camera, digital camera, manipulators and slurp gun (suction sampler). The following seven species were collected, of which three are new to science: Plesionika unicolor n. sp. (Caridea: Pandalidae), Homeryon armarium Galil, 2000 (Polychelida: Poly- chelidae), Eumunida nikko n. sp. (Anomura: Eumunididae), Michelopagurus limatulus (Henderson, 1888) (Anomura: Paguridae), Galilia petricola n. sp. (Brachyura: Leucosiidae), Cyrtomaia micronesica Richer de Forges & Ng, 2007 (Brachyura: Inachidae), and Progeryon mus Ng & Guinot, 1999 (Brachyura: Progeryonidae). Affinities of these three new species are discussed. All but H. armarium are recorded from the Japanese Exclusive Economic Zone for the first time. Brief notes on ecology and/or behavior are given for each species.
    [Show full text]
  • Description of Some Planktonic Larval Stages of Stenopus Spinosus Risso
    SCI. MAR., 54(3): 293-303 1990 Description of some planktonic larval stages of Stenopus spinosus Risso®, 1826: Notes on the genus and the systematic position of the Stenopodidea as revealed by larval characters* RABIA SERIDJI ISN/USTHB, BP 39. El-Alia (Bab Ezzouar). 16111 Alger. Algerie. SUMMARY: Descriptions are given of some zoeal stages (I-V) of Stenopus spinosus Risso 1826 (Crustacea, Decapo- da: Stenopodidea) from plankton collected off the Algerian coast. These larvae are compared to the same species but from other localities. They show great diversity in general appearance: in the same genus there is a wide range of detailed structure in almost all species. The genus Stenopus Latreille has a circumtropical distribution and the Atlantic Mediterranean species, Stenopus spinosus, and the Indopacific one, Stenopus hispidus, are vicariant, relicts from the Mesogean Sea. From a taxonomic point of view, the Stenopodidea constitute a group with doubtful affinity. From a larval point of view the form and the structure of the telson is considered very important particularly the second spine reduced to a fine hair. This hair-like second telson process is not present in any Dendrobranchiata, Caridea, Astacidea and Palinura, but it is common in Stenopodidea, Thalassinidea and Anomura; there appears to be some larval affinities with reptant groups. The Stenopodidea should be considered as an independent group branching off the line which later gave rise to the Thalassinidea and Anomura. It seems likely that the origin and affinities of Stenopodidea should be found among reptant groups. Key words: Stenopodidea, larvae, systematics, Algerian coast. RESUMEN: DESCRIPCION DE ALGUNOS ESTADOS LARVARIOS PLANCTONICOS DE Stenopus spinosus Risso 1826: NOTAS SO- BRE EL GENERG Y POSICI6N SISTEMATICA DE LOS STENOPODIDEA ATENDIENDO A CARACTERES LARVARIOS.
    [Show full text]
  • Freshwater Transitions and Symbioses Shaped the Evolution and Extant Diversity of Caridean Shrimps
    ARTICLE DOI: 10.1038/s42003-018-0018-6 OPEN Freshwater transitions and symbioses shaped the evolution and extant diversity of caridean shrimps Katie E. Davis1, Sammy De Grave 2, Cyrille Delmer3 & Matthew A. Wills3 1234567890():,; Understanding the processes that shaped the strikingly irregular distribution of species richness across the Tree of Life is a major research agenda. Changes in ecology may go some way to explain the often strongly asymmetrical fates of sister clades, and we test this in the caridean shrimps. First appearing in the Lower Jurassic, there are now ~3500 species worldwide. Carideans experienced several independent transitions to freshwater from marine habitats, while many of the marine species have also evolved a symbiotic lifestyle. Here we use diversification rate analyses to test whether these ecological traits promote or inhibit diversity within a phylogenetic framework. We demonstrate that speciation rates are more than twice as high in freshwater clades, whilst symbiotic ecologies are associated with lower speciation rates. These lower rates amongst symbiotic species are of concern given that symbioses often occur in some of the most diverse, delicately balanced and threatened marine ecosystems. 1 Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK. 2 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. 3 Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AX, UK. Correspondence and requests for materials should be addressed to K.E.D. (email: [email protected]) COMMUNICATIONS BIOLOGY | (2018) 1:16 | DOI: 10.1038/s42003-018-0018-6 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0018-6 eveloping a better understanding of the forces that shape reefs, which are amongst the most threatened ecosystems on global biodiversity patterns was identified as one of the 25 Earth.
    [Show full text]
  • Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida
    SHRIMPS, LOBSTERS, AND CRABS OF THE ATLANTIC COAST OF THE EASTERN UNITED STATES, MAINE TO FLORIDA AUSTIN B.WILLIAMS SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1984 © 1984 Smithsonian Institution. All rights reserved. Printed in the United States Library of Congress Cataloging in Publication Data Williams, Austin B. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Rev. ed. of: Marine decapod crustaceans of the Carolinas. 1965. Bibliography: p. Includes index. Supt. of Docs, no.: SI 18:2:SL8 1. Decapoda (Crustacea)—Atlantic Coast (U.S.) 2. Crustacea—Atlantic Coast (U.S.) I. Title. QL444.M33W54 1984 595.3'840974 83-600095 ISBN 0-87474-960-3 Editor: Donald C. Fisher Contents Introduction 1 History 1 Classification 2 Zoogeographic Considerations 3 Species Accounts 5 Materials Studied 8 Measurements 8 Glossary 8 Systematic and Ecological Discussion 12 Order Decapoda , 12 Key to Suborders, Infraorders, Sections, Superfamilies and Families 13 Suborder Dendrobranchiata 17 Infraorder Penaeidea 17 Superfamily Penaeoidea 17 Family Solenoceridae 17 Genus Mesopenaeiis 18 Solenocera 19 Family Penaeidae 22 Genus Penaeus 22 Metapenaeopsis 36 Parapenaeus 37 Trachypenaeus 38 Xiphopenaeus 41 Family Sicyoniidae 42 Genus Sicyonia 43 Superfamily Sergestoidea 50 Family Sergestidae 50 Genus Acetes 50 Family Luciferidae 52 Genus Lucifer 52 Suborder Pleocyemata 54 Infraorder Stenopodidea 54 Family Stenopodidae 54 Genus Stenopus 54 Infraorder Caridea 57 Superfamily Pasiphaeoidea 57 Family Pasiphaeidae 57 Genus
    [Show full text]
  • Onl Er Ece3 347 1..8
    Phylogenetics links monster larva to deep-sea shrimp Heather D. Bracken-Grissom1,2, Darryl L. Felder3, Nicole L. Vollmer3,4, Joel W. Martin5 & Keith A. Crandall1,6 1Department of Biology, Brigham Young University, Provo, Utah, 84602 2Department of Biology, Florida International University-Biscayne Bay Campus, North Miami, Florida, 33181 3Department of Biology, University of Louisiana at Lafayette, Louisiana, 70504 4Southeast Fisheries Science Center, National Marine Fisheries Service, NOAA , Lafayette, Louisiana, 70506 5Natural History Museum of Los Angeles County, Los Angeles, California, 90007 6Computational Biology Institute, George Washington University, Ashburn, Virginia, 20147 Keywords Abstract Cerataspis monstrosa, Decapoda, DNA barcoding, larval–adult linkage, Mid-water plankton collections commonly include bizarre and mysterious phylogenetics. developmental stages that differ conspicuously from their adult counterparts in morphology and habitat. Unaware of the existence of planktonic larval stages, Correspondence early zoologists often misidentified these unique morphologies as independent Heather D. Bracken-Grissom, adult lineages. Many such mistakes have since been corrected by collecting Department of Biology, Florida International larvae, raising them in the lab, and identifying the adult forms. However, University, Biscayne Bay Campus, North challenges arise when the larva is remarkably rare in nature and relatively Miami, FL, 33181. Tel: +305 919-4190; Fax: +305 919-4030; E-mail: heather. inaccessible due to its changing habitats over the course of ontogeny. The mid- brackengrissom@fiu.edu water marine species Cerataspis monstrosa (Gray 1828) is an armored crustacean larva whose adult identity has remained a mystery for over 180 years. Our Funding Information phylogenetic analyses, based in part on recent collections from the Gulf of Mex- National Oceanic and Atmospheric ico, provide definitive evidence that the rare, yet broadly distributed larva, Administration, National Science Foundation, C.
    [Show full text]
  • A Phylogenomic Framework, Evolutionary Timeline, and Genomic Resources for Comparative Studies of Decapod Crustaceans
    bioRxiv preprint doi: https://doi.org/10.1101/466540; this version posted November 9, 2018. The copyright holder has placed this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt this material for any purpose without crediting the original authors. A PHYLOGENOMIC FRAMEWORK, EVOLUTIONARY TIMELINE, AND GENOMIC RESOURCES FOR COMPARATIVE STUDIES OF DECAPOD CRUSTACEANS Joanna M. Wolfe1,2,3,*, Jesse W. Breinholt4,5, Keith A. Crandall6,7, Alan R. Lemmon8, Emily Moriarty Lemmon9, Laura E. Timm10, Mark E. Siddall1, and Heather D. Bracken-Grissom10,* 1 Division of Invertebrate Zoology & Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA 2 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Museum of Comparative Zoology & Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA 4 Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA 5 RAPiD Genomics, Gainesville, FL 32601, USA 6 Computational Biology Institute, The George Washington University, Ashburn, VA 20147, USA 7 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20012, USA 8 Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306, USA 9 Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA 10 Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA * corresponding authors: [email protected] and [email protected] ABSTRACT Comprising over 15,000 living species, decapods (crabs, shrimp, and lobsters) are the most instantly recognizable crustaceans, representing a considerable global food source.
    [Show full text]