Plasma Diagnostics
Total Page:16
File Type:pdf, Size:1020Kb
Plasma Diagnostics Thomas J. Dolan ASIPP, Hefei, China 2011 American Nuclear Society Speakers Bureau dolan asipp 2011 1 Topics Goals Electric Probes Magnetic Probes Passive Particle Methods Deposition Diagnostics Active Particle Methods Passive Wave Methods visible, ultraviolet, x-ray Active Wave Methods ITER diagnostics dolan asipp 2011 2 Goals of Diagnostics space-time mapping n f(vi) or Ti f(ve) or Te J, B, E Impurity concentrations Rotation velocity Plasma waves MHD instabilities Turbulence & microinstabilities Redundancy: 2-3 techniques Accuracy: a few percent. dolan asipp 2011 3 Goals of Diagnostics Resolution Tokamaks: 1 cm 0. 1 ms Inertial: 1 m 10 ps Fourier analysis of waves (, k) Improved signal-to-noise ratios Optical filters Modulation of incident beam Statistical methods of error analysis Computer graphics displays dolan asipp 2011 4 Electrical Probes dolan asipp 2011 5 Flexible Bellows for Probe Insertion from Hutchinson, 1987 dolan asipp 2011 6 Langmuir Probe Tip from Hutchinson, 1987 dolan asipp 2011 7 Langmuir Probe dolan asipp 2011 8 Langmuir Probe Data In exponential region ln(I2/I1) = e(2 –1)/kTe Te Ion saturation current Ii 1/2 1/2 -3 ni = 171.7 Ii mi /[Ape(kTe) ]m] m dolan asipp 2011 9 Electric Probes Multiple probes voltages at different points E field an d res is tiv ity. Probe disturbs the local ppplasma parameters. Double probe reduces the error. dolan asipp 2011 10 Floating Double Probe dolan asipp 2011 11 Electric Probes • Resonance probe has rf voltage applied to couple w ith p lasma waves • Fluctuations of n and f information on turbulence (k, , …) • Probe may melt if plasma temperature high • Reciprocating probes enter and leave in ms. dolan asipp 2011 12 Magnetic Probes dolan asipp 2011 13 Toroidal and Poloidal Magnetic Field Components dolan asipp 2011 14 Toroidal and Poloidal Angles dolan asipp 2011 15 Poloidal Mode Numbers m = 0 m = 1 m = 2 dolan asipp 2011 16 Toroidal Mode Numbers dolan asipp 2011 17 Coil to Measure the Magnetic Field Maxwell equation N-turn coil = NAc ( B / t) from Hutchinson, 1987 dolan asipp 2011 18 Magnetic Field Measuring Coils C1 dBt/dt Roggpowski loop: C2 dBp/dt C3 dBv/dt C4 dBp/dt at various mode numbers (m/n) C5 dB/dt inside plasma (perturb plasma; may melt, impurities) dolan asipp 2011 19 Poloidal Field Measurements from Hutchinson, 1987 dolan asipp 2011 20 Measuringgp Fourier Components of Waves from Hutchinson, 1987 dolan asipp 2011 21 Evolution of Plasma Boundary Shape from Hutchinson, 1987 dolan asipp 2011 22 Internal Magnetic Field Probes from Hutchinson, 1987 dolan asipp 2011 23 Poloidal Magnetic Field Profile vs. Time from Hutchinson, 1987 dolan asipp 2011 24 Magnetic Flux Surfaces from Internal Magnetic Field Probe Measurements from Hutchinson, 1987 dolan asipp 2011 25 Toroidal Current Density from measurements of magnetic field J = ∇xB/o dolan asipp 2011 from Hutchinson, 1987 26 Pressure Profile from Magnetic Field Data from Hutchinson, 1987 dolan asipp 2011 27 Passive Particle Diagnostics dolan asipp 2011 28 Gridded Energy Analyzer + e- from Hutchinson, 1987 dolan asipp 2011 29 Gridded Energy Analyzer Data b dolan asipp 2011 30 Sensitive Ion Detector Ions secondary electrons photons photoelectrons more secondary electrons. dolan asipp 2011 31 Neutral Atom Energy Analyzer Ionization Deflection by magnet Deflection by electrodes Analysis f(vn) Calibrate using known neutral beam energies. dolan asipp 2011 32 Fast Neutral Atom Spectrum from Hutchinson, 1987 dolan asipp 2011 33 Fast Neutral Spectrum with Neutral Beam from Hutchinson, 1987 dolan asipp 2011 34 Fast neutral atoms in ITER Hot, dense tokamak plasma Energy analyzer Neutral atoms Most atoms are ionized before escaping. Atoms near edge can reach the analyzer. dolan asipp 2011 35 Neutron Production • Thermonuclear (high-Ti plasma) – JET, TFTR • Beam-plasma interactions -- TFTR • Plasma instabilities – Zeta toroidal pinch (1950s) • Ions bombarding surfaces • Runaway electrons • Gamma ray impact • CiCosmic rays dolan asipp 2011 36 Fusion Reaction Rate vs.Temperature from Hutchinson, 1987 dolan asipp 2011 37 Proportional Counters Gas-filled proportional counters dolan asipp 2011 38 Fast Neutron Energy Spectrum Gas-filled proportional counters with CH4 Fast neutrons recoil protons ionization proportional to proton energy. The neutron energy spectrum can be estimated from the ppgpulse height spectrum of the detector. dolan asipp 2011 39 Scintillation Detector Pulse height analysis estimate of neutron energy spectrum Shielding from x-rays dolan asipp 2011 40 Foil Activation 109Ag + n 110Ag* 110Cd + , half-life 24 s. Number of betas detected neutron emission rate. No neutron energy spectrum information Insensitive to x-rays Useful to calibrate other detectors Neutron detector calibration also by 252Cf. dolan asipp 2011 41 Neutron Time-of-Flight Spectrometry Eno Ep1 scintillator En1 Ep2 Measure Ep1, Ep2, t Calculate En1, Eno Wa lker, RSI 57 , 1740 dolan asipp 2011 42 Neutron Time-of-Flight Spectrometry Peak at 14. 06 + 039MeV0.39 MeV dolan asipp 2011Walker, RSI 57, 1740 43 Neutron Imaging in JET qa ~ 8.5 3.3 14 MeV neutrons from Triton beam injection Simulation tracking fast ion orbits dolan asipp 2011 JET Bulletin 060314 44 Particle Deppgosition Diagnostics dolan asipp 2011 45 Deposition Diagnostics Knowledge needed for materials selection mirror and window lifetime safety -- tritium and beryllium hazards Proposed limits for ITER 10–20 k g o f b ery llium dus t on ho t sur faces 100 kg for carbon dust 100–400 kg for tungsten dust Skinner, RSI 75, 4213 (2004) dolan asipp 2011 46 Deposition Diagnostics Eroded C, Si, O, Fe, Ni, Be, … Characterization: particle size distribution composition quantity toxicity Skinner, RSI 75, 4213 (2004) dolan asipp 2011 47 Deposition Diagnostics Current tokamaks ITER Thermal energy 10 M 300 MJ Disruptions < 1 MJ/m2 ~ 10 MJ/m2 Hours per year ~ 10 > 200 Carbon erosion < 0.3 mm/year > 10 mm/year Car bon depositi on~ 60 m/h 50 m/day Tritium per pulse 0.2 g 120 g Skinner, RSI 75, 4213 (2004) dolan asipp 2011 48 Deposition Diagnostics 6 MHz quartz crystal microbalance in NSTX Deposited hydrocarbon film ~ 161.6 g /cm3 Skinner, RSI 75, 4213 (2004) dolan asipp 2011 49 Deposition Diagnostics NSTX 0.15 s discharge Skinner, RSI 75, 4213 (2004) dolan asipp 2011 50 Deposition Diagnostics Grid to detect dust particles Skinner, RSI 75 , 4213 (2004) dolan asipp 2011 51 Deposition Diagnostics Dust detectors in NSTX Skinner, RSI 75, 4213 (2004) dolan asipp 2011 52 Deposition Diagnostics Grid spacing 125 m x 381 m o 762 m Skinner, RSI 75, 4213 (2004) dolan asipp 2011 53 AiActive Part ilDiicle Diagnosti cs dolan asipp 2011 54 Electron Beam Probe Electron gun detector Measure alonggpgy field lines in open magnetic systems Beam energy loss related to plasma heating by beam dolan asipp 2011 55 Heavy Ion Beam (HIB) Probe Detector measures energy ++ of Tl ions 1 dolan asipp 2011 56 Potential Profile from HIB Probe from Hutchinson, 1987 dolan asipp 2011 57 HIBP in Tuman-3M Tokamak 1 80 keV 275 3 65 4 60 555 645 7 40 1’, 2’, 3’, 4’ denote poloidal variations of injection angle dolan asipp 2011 58 HIBP in TJ-II Stellarator, Spain Multiple Cell Array Detector dolan asipp 2011 59 Neutral Atom Beam Probes Attenua tion: UftiUse of two ion spec ies ne andTd Te. Scattering: Beam atoms (mass mb) scattered by cold gas, maximum angle = Arcsin(mi/mb) In hot plasma, larger scattering angles estimate of Ti. Charge exchange: beam enhances cx losses of hot plasma ions. Spectroscopy: Analyze light caused by neutral beam as it passes through plasma local ne and B. dolan asipp 2011 60 Charge Exchange Recombination Spectroscopy (CXRS) Heidbrink PPCF 46, 1855 (2004) dolan asipp 2011 61 CXRS Doppler-shifted photon area under curve --> relative ion density Courtesy of D. J. Den Hartog dolan asipp 2011 62 © 2006 by Daniel J. Den Hartog CXRS Measurement of Helium Ash in JET Quartz fibers heated to prevent browning during DT operation Hillis, RSI 75, 3449 (2004) dolan asipp 2011 63 Charge Exchange Recombination Spectroscopy Viewing optics see ions moving both down (red shift) and up (blue shift). 80 keV deuterons in DIII-D. Heidbrink PPCF 46, 1855 (2004) dolan asipp 2011 64 Charge Exchange Recombination Spectroscopy Re-neutralized 80 keV D+ beam ions in DIII-D D light o = 656.1 nm Doppler shift ~ 4 nm Stark splitting < 1 nm Heidbrink PPCF 46, 1855 (2004) dolan asipp 2011 65 CXRS in DIII-D CVI B2TB = 2 T n ~ 2x1019 m-3 8.8 MW NBI tangential vertical Burre ll, RSI 75 , 3455 (2004) dolan asipp 2011 66 CXRS in DIII-D Edge Localized MdMode (ELM) at t = 3152 ms Burre ll, RSI 75 , 3455 (2004) dolan asipp 2011 67 Helium Ash Measurement in JET 5% He injected Hillis, RSI 75 , 3449 (2004) dolan asipp 2011 68 McKee HTPD 2006 dolanDRAFT: asipp not 2011 for transmission 69 McKee HTPD 2006 dolanDRAFT: asipp not2011 for transmission 70 McKee HTPD 2006 dolanDRAFT: asipp not2011 for transmission 71 McKee HTPD 2006 dolanDRAFT: asipp not2011 for transmission 72 McKee HTPD 2006 dolanDRAFT: asipp not2011 for transmission 73 McKee HTPD 2006 dolanDRAFT: asipp not2011 for transmission 74 McKee HTPD 2006 dolanDRAFT: asipp not2011 for transmission 75 McKee HTPD 2006 dolanDRAFT: asipp not2011 for transmission 76 McKee HTPD 2006 dolanDRAFT: asipp not 2011 for transmission 77 McKee HTPD 2006 dolanDRAFT: asipp not2011 for transmission 78 Lithium Beam Probe Zeeman Effect from Hutchinson, 1987 dolan asipp 2011 79 Motional Stark Effect (MSE) diagnostic |B| •H atom beam is excited and radiates H0 e- H0 H0 h plasma 0 h • H electron energy levels are split by motional E = vbeam x B n = 3 n = 2 • Measure spectral lines vbeam, B field dolan asipp 2011 80 © 2006 by Daniel J.