Search for New Phenomena in Dijet Angular Distributions at S = 8 and 13
Total Page:16
File Type:pdf, Size:1020Kb
SEARCHFORNEWPHENOMENAINDIJETANGULARp DISTRIBUTIONSAT S = 8 AND 1 3 TEV lene bryngemark Thesis submitted for the degree of Doctor of Philosophy CERN-THESIS-2016-007 18/03/2016 2016 ABSTRACT A new energy regime has recently become accessible in collisions at the Large Hadron Collider at CERN. Abundant in hadron collisions, the two-jet final state explores the structure of the constituents of matter and the possible emergence of new forces of nature, in the largest momentum transfer collisions produced. The results from searches for phenomena beyond the Standard Model in the dijet angular distributions are presented. The data were collected with the ATLAS detector in proton-proton collisions at centre-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 17.3 fb−1 and 3.6 fb−1, respectively. No evidence for new phenomena was seen, and the strongest 95% confidence level lower limits to date were set on the scale of a range of suggested models. This work details the limits on the compositeness scale of quarks in a contact interaction scenario with two different modes of interference with Standard Model processes, as well as on the threshold mass of quantum black holes in a scenario with 6 extra spatial dimensions, and on the mass of excited quark states. It also includes new exclusion limits on the mass of a dark matter mediator and its coupling to fermions, as derived from the contact interaction limits using an effective field theory approach. The performance in ATLAS of the jet-area based method to correct jet measurements for the overlaid energy of additional proton-proton collisions is also presented. It removes the dependence of the jet trans- verse momentum on overlaid collision energy from both simultaneous interactions and those in the neighbouring bunch crossings, and was adopted as part of the jet calibration chain in ATLAS. iii POPULÄRVETENSKAPLIG SAMMANFATTNING Hur förklarar vi vad som hände efter Big Bang? Hur är det möjligt att titta 14 miljarder år tillbaka i tiden, isolera de första miljarddelarna av en sekund, och studera vad som pågår precis där och då? Svaret är såklart, att vi inte kan det. Det vi kan göra, är att om och om igen återskapa några viktiga aspekter av de förhållanden som rådde då, och studera vad som händer. Metoden vi använder är att omvandla energi till partiklar med massa — precis som vi föreställer oss hände i universums begynnelse. Det gör vi genom att accelererera upp stora mängder av protoner — atomkärnor av universums lättaste och vanli- gaste grundämne, väte — till höga energier i en partikelaccelerator, och sedan låta dem kollidera. Runt kollisionspunkten placeras en detektor. I kollisionerna kan tunga partiklar bildas eftersom det finns så mycket energi tillgänglig. De tunga partiklarna sönderfaller sedan till lättare partiklar, ibland i långa sönderfallskedjor fram till de lätta partiklar som är det som universum består av idag. De växelverkar med materialet i detektorn och ger upphov till elektriska signaler som läses ut och används till att rekonstruera vad som bildades i kollisionen. På så sätt kan vi få en glimt av vad som kunde hända med den stora tillgängliga energi som fanns koncentrerad i en mycket liten volym i universums begynnelse. Den vanligaste typen av växelverkan mellan protonernas bestånds- delar — kvarkar och gluoner, eller med ett gemensamt namn: partoner — är den så kallade starka kraften. I protonkollisionerna växelverkar två partoner, och ett möjligt utfall är att nya partoner bildas med hög energi, och slungas ut från kollisionspunkten. Men en egenskap hos den starka kraften är att en parton aldrig kan isoleras! Istället bildas kontinuerligt nya kvark/antikvark-par i dess kölvatten, av rörelsee- nergin hos partonen, som successivt bromsas in av energiförlusten. Resultatet blir en riktad skur av partiklar — en jet — som tillsammans har den energi och de andra kvantmekaniska egenskaper som parto- v nen fick i kollisionen. Genom att mäta jetens egenskaper kan vi säga något om egenskaperna hos partonen som bildades. Den här avhandlingen beskriver dels en metod för att noggrant kunna mäta jetenergier även när mätningen påverkas av energi från andra kollisioner, och dels hur vinklarna mellan jetpar kan användas för att leta efter fenomen som inte beskrivs av den rådande teori som beskriver vilka naturlagar (krafter och fundamentala partiklar) som finns. Vi vet att det behövs en mer fundamental teori än den nuvaran- de, eftersom det finns observationer som den inte förklarar, t ex den stora skillnaden mellan massorna av olika typer av kvarkar. En av den experimentella partikelfysikens viktigaste uppgifter just nu är därmed att finna tecken på avvikelser från den rådande teorin, så att vi kan börja ana på vilket sätt vi bättre kan beskriva universums bestånds- delar och krafter. Avhandlingen visar att vid de mest högenergetiska kollisioner vi hittills kunnat åstadkomma i en accelerator, har vi ännu inte observerat några avvikelser från den rådande teorin. vi LISTOFPUBLICATIONS Some of the original work described in this thesis has appeared previ- ously in the following publications: [1] ATLAS Collaboration. Search for New Phenomenap in Dijet Mass and Angular Distributions from pp Collisions at s = 13 TeV with the ATLAS Detector. Physics Letters B, 754:302 – 322, 2016. [2] ATLAS Collaboration. Search for New Phenomena inp the Dijet Angular Distributions in Proton-Proton Collisions at s = 8 TeV with the ATLAS Detector. Phys. Rev. Lett., 114:221802, 2015. [3] ATLAS Collaboration. Performancep of pile-up mitigation tech- niques for jets in pp collisions at s = 8 TeV using the ATLAS detector. To be published in EPJC, 2015. arXiv:1510.03823. [4] ATLAS Collaboration. Search for new phenomenap in the dijet mass distribution using p-p collision data at s = 8 TeV with the ATLAS detector. Phys. Rev. D, 91:052007, 2015. [5] ATLAS Collaboration. Search for New Phenomena in Dijetp Mass and Angular Distributions with the ATLAS Detector at s = 13 TeV. Technical Report ATLAS-CONF-2015-042, CERN, Geneva, Aug 2015. [6] ATLAS Collaboration. Pile-up subtraction and suppression for jets in ATLAS. Technical Report ATLAS-CONF-2013-083, CERN, Geneva, Aug 2013. [7] ATLAS Collaboration. Search for New Phenomena in the Dijet −1 Massp Distribution updated using 13.0 fb of pp Collisions at s = 8 TeV collected by the ATLAS Detector. Technical Report ATLAS-CONF-2012-148, CERN, Geneva, Nov 2012. vii ACKNOWLEDGEMENTS It takes a village to write a thesis. Countless are the people who have contributed in one way or another to the work presented here, with efforts ranging from building detectors to cooking and caring for me when work has taken too much of my time. I will nevertheless attempt to list a few I want to thank. Torsten, who suggested the research topic of dijet distributions and became my main supervisor. Always online, always there for physics or coffee or both, just waiting to make a discovery (I’m sorry we didn’t yet). It’s safe to say that without you, this thesis would not have been. Else, Johan, my co-supervisors, who gave me the blessing of not worrying, but being encouraging and available when I needed it. A special thanks to them and David for thesis draft reading. Ariel, who talks of jets with contagious enthusiasm and knows there is so much more we can do to extract all their secrets. I could not have had a better start in ATLAS than I got from working with you. I also thank John, who regrettably left physics, for patiently discussing and condensing all my (and Ariel’s) wild pile-up ideas to a useful conclusion and strategy. Caterina. Dijets, jets in ATLAS, just ATLAS would not be the same without you. Sharing code and expertise and cat pictures, you thoroughly showed me what working in a team can be. You’re ready to both give advice and get your own hands dirty; Lund is better with you. Tuva. You have to admit that this is one crazy adventure we started together. Our paths from starting a Bachelor’s project to finishing a PhD were increasingly parallel, but queerly similar — I can but don’t want to imagine this time without you. All my shorter and longer term colleagues (and you know I count students) who have made the division kitchen such a lively place! Anders, Bozena, Evert, Peter, the steady coffee and lunch crowd, always up for a debate, and for support over the years. Florido and ix my fellow PhD students (Alejandro, Anders, Anthony, Martin, Sasha, Tuva, Vytautas, and more recently Ben, Edgar, Trine and Katja) — for coffee and beer, physics and politics, for lunches and dinners and the opportunity to vent our fair share of collaboration frustration. That same collaboration for making it all possible. The speedy dijet team, striking thrice within a year, ready to solve anything and on two occasions making our results public within weeks after data taking finished. The numerous delightful people in the university’s most charming LGBTQ network for employees, you know who you are. Hanno and Kroon and Laurie, for feeding and reading, for diverting my attention and listening to everything. Karin for laughter and all too rare long breakfasts and for always letting me leave the dishes. Pauline, for housing me during my year at CERN, for warm friendship and inviting me to join anything from dinners to running before dawn. Lotte for in turn housing my cat that year, and Julius-Lisa, that same cat for — I dare say — love and support. The pursuit of a PhD is the hardest on, and least gratifying for, the persons closest to you. Elina, words will never be enough. Thank you for letting me get absorbed, and waiting for me to come out again.