https://doi.org/10.5194/acp-2020-361 Preprint. Discussion started: 4 May 2020 c Author(s) 2020. CC BY 4.0 License. Reappraising the appropriate calculation of a common meteorological quantity: Potential Temperature Manuel Baumgartner1,2, Ralf Weigel2, Ulrich Achatz4, Allan H. Harvey3, and Peter Spichtinger2 1Zentrum für Datenverarbeitung, Johannes Gutenberg University Mainz, Germany 2Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Germany 3Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, USA 4Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt, Frankfurt am Main, Germany Correspondence: Manuel Baumgartner (
[email protected]) Abstract. The potential temperature is a widely used quantity in atmospheric science since it is conserved for air’s adiabatic changes of state. Its definition involves the specific heat capacity of dry air, which is traditionally assumed as constant. However, the literature provides different values of this allegedly constant parameter, which are reviewed and discussed in this study. Furthermore, we derive the potential temperature for a temperature-dependent parameterization of the specific heat capacity of 5 dry air, thus providing a new reference potential temperature with a more rigorous basis. This new reference shows different values and vertical gradients in the upper troposphere and the stratosphere compared to the potential temperature that assumes constant heat capacity. The application of the new reference potential temperature to the prediction of gravity wave breaking altitudes reveals that the predicted wave breaking height may depend on the definition of the potential temperature used. 1 Introduction 10 According to the book Thermodynamics of the Atmosphere by Alfred Wegener (1911), the first published use of the expression potential temperature in meteorology is credited to Wladimir Köppen (1888)1 and Wilhelm von Bezold (1888), both following the conclusions of Hermann von Helmholtz (1888) (Kutzbach, 2016).