Saveasandivolc 41X71.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Saveasandivolc 41X71.Pdf Swarms ISLI SHZ Start time: 2011235 8/23/11 02:00:00 Reconnaissance seismology at nine volcanoes of the central Andes At least 10 earthquake swarms were found +0.0h near Ollagüe, Guallatiri, Puchuldiza 1. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA ([email protected]). 1 2 1,3 1 Geysers (near Isluga: shown at right 1 1 2. Department of Earth & Environmental Science, New Mexico Institute of Technology, Socorro, NM, USA. M. E. Pritchard, D. Krzesni, N. Button, M. Welch, J. A. Jay, S. T. Henderson on helicorder), & Putana +1.0h 3. University of South Carolina, Columbia, SC, USA. 7. SERGEOTECMIN, La Paz, Bolivia. Cornell Andes 4 5 6 7 8 9 10 4. Universidad de Tarapacá, Arica, Chile. 8. Observatorio San Calixto, La Paz, Bolivia. Number of earthquakes located per day within 25km of Isluga B. Glass, V. Soler, A. Amigo, M. Sunagua, E. Minaya, J. Clavero, S. Barrientos 5. Estación Volcanológica de Canarias, Tenerife, Spain. 9. Energía Andina, Santiago, Chile. Project 7 V53B-2817 +2.0h 6. SERNAGEOMIN, Santiago, Chile. 10. Universidad de Chile, Santiago, Chile. 6 5 Parinacota last eruption: ~300 AD +3.0h 500.0 Motivation & Methods Potential satellite thermal anomaly Irruputuncu volcano Irruputuncu & Olca 4 * The seismicity of the central Andes volcanoes (Bolivia and Chile) is poorly constrained -- no unambiguous +4.0h 0 Parinacota & Guallatiri Guallatiri last eruption 1960 Irruputuncu last eruption: 1995 3 volcanic earthquakes in global catalogs (ISC & PDE). Fumarolically active Olca last eruption: 1867 Number of earthquakes 2 PARS seismic station with Swarm after 2001 Mw 8.4 Perú earthquake Both fumarolically active 0m 10m 20m 30m 40m 50m 60m * Temporary networks (1 to 5 stations each) of short and intermediate period seismometers from PASSCAL (Muñoz, 2006) Filter: BW 0.8 5 25.0 5 Parinacota & Sajama volcanoes BRTT dbheli: avChile dbheli.avChile.ISLI.SHZ.252481.ps scott Thu Aug 2 16:55:27 2012 (ANDIVOLC project: L22 (1 Hz) and Guralp 40 T’s) and Geospace GS-11D (4.5 Hz)) deployed for several 1 69.6˚W 69.3˚W 69˚W 68.7˚W months to years at nine potentially active volcanoes in Chile & Bolivia between 2004-2012. 0 Lowest Error Locations 5/1/11 6/1/11 7/1/11 8/1/11 9/1/1110/1/1111/1/1112/1/111/1/12 2/1/123/1/12 Date * Volcanoes selected because they have thermal anomalies in nighttime satellite ASTER infrared observations, 18˚S Highest Error Locations 18˚S Seismometer (Jay et al., 2013) active fumaroles, or recent eruptive activity. PACA Photo of Olca fumaroles from Swarms occur at Putana volcano (for Taapaca PAGE Volcano Felipe Aguilera example on heliocorder to the right on 13 Parinacota * Phase arrivals manually picked -- more than 5000 local and regional earthquakes located using the PARW Oct. 2009: Soler & Alvaro, 2012) and generalized earthquake-location (GENLOC) program that is part of the Antelope software package. PARS triggered by the Mw 8.8 Maule, Chile 18.3˚S 18.3˚S All earthquakes (including mine blasts) earthquake on 27 Feb. 2010 (below). GUAJ Only night events (6pm-11am) Other published studies with Acotango 68.9˚W 68.7˚W 68.5˚W 68.3˚W This study GUAC 68.9˚W 68.7˚W 68.5˚W 68.3˚W Guallatiri 20.6˚S 20.6˚S On the other hand, the most active volcano earthquakes Lowest Error Locations 20.6˚S 20.6˚S Highest Error Locations Lowest Error Locations GUAW GUAS Seismometer Highest Error Locations volcano in the central Andes in recent 18˚S Mine Seismometer Parinacota: Mine years (Láscar volcano, Chile) did not have Volcano IRR2 Volcano 4 seismometers 18.6˚S 18.6˚S IRR2 Irruputuncu IRR1 significant triggered local seismicity from Apr. 2011 − Mar. 2012 Guallatiri volcano Irruputuncu IRR1 the Maule earthquake (bottom right from 20.8˚S 20.8˚S Guallatiri: 20.8˚S 20.8˚S 0 km 12.5 km 25 km Soler & Alvaro, 2012) 4 seismometers 69.4˚W 69.2˚W 69˚W OLC4 OLC4 18.6˚S Apr. 2011 − Mar. 2012 Isluga: 18.3˚S 18.3˚S Depth (km) OLC3 2 seismometers OLC3 Lowest Error Locations 0 0 10 1020 2030 3040 4050 50 Oct. 2012−present Highest Error Locations OLCE OLCE Seismometer Olca−Paruma OLC1 GUAJ 18.9˚S 18.9˚S Olca−Paruma OLC1 20˚S Acotango 69.6˚W 69.3˚W 69˚W 68.7˚W Rosario OLC2 Volcano Ujina Rosario OLC2 21˚S 21˚S Ujina Quebrada Blanca OLC5 21˚S 21˚S Quebrada Blanca OLC5 Isluga: GUAC 4 seismometers Guallatiri Number of earthquakes located per day within 25km of Parinacota 6 0 km 12.5 km 25 km 0 km 12.5 km 25 km Apr. 2011 − Mar. 2012 Depth (km) Depth (km) km 0 0 10 1020 2030 3040 4050 50 0 0 10 1020 2030 3040 4050 50 GUAS 5 18.5˚S GUAW 18.5˚S 21.2˚S 21.2˚S 19.8˚S Uturuncu: 21.2˚S 21.2˚S 0 50 68.9˚W 68.7˚W 68.5˚W 68.3˚W 1 seismometer 68.9˚W 68.7˚W 68.5˚W 68.3˚W April 2003 22˚S San Pedro 4 Number of earthquakes located per day within 25km of Irruputuncu 2 seismometers 6 Number of earthquakes located per day within 25km of Olca Uturuncu: 10 Nov. 2009 − 15 seismometers present 3 9 Irruputuncu: Apr. 2009 − 0 km 12.5 km 25 km 5 Irruputuncu: 4 seismometers Apr. 2010 Apr. 2010− Feb. 2011 Depth (km) 8 1 seismometer 0 0 10 1020 2030 3040 4050 50 2 4 7 Nov. 2005 − Number of earthquakes Mar. 2006 Olca: Lascar: Lascar: 21˚S 6 seismometers 4 seismometers 4 seismometers 18.7˚S 18.7˚S 6 69.4˚W 69.2˚W 69˚W 3 Apr. 2010 − Feb. 2011 Apr. 1994 2009−present 1 5 24˚S Ollague: Ollague: Number of earthquakes located per day within 25km of Guallatiri 4 10 2 1 seismometer 4 seismometers 0 Number of earthquakes Dec. 2004 − Oct. 2010 − 6/1/11 7/1/11 8/1/11 9/1/11 10/1/11 11/1/11 Number of earthquakes 3 Feb. 2007 Feb. 2011 9 Date Lastarria: 1 2 A selection of interferograms (right) shows 8 17 seismometers 1 a pulse of 4 cm of ground uplift at Putana Nov. 2007 − Jan. 2008 Guallatiri volcano 7 0 5/1/10 6/1/10 7/1/10 8/1/10 9/1/1010/1/1011/1/1012/1/101/1/11 2/1/11 0 volcano sometime between 18 Oct. 2009 5/1/10 6/1/10 7/1/10 8/1/10 9/1/1010/1/1011/1/1012/1/101/1/11 2/1/11 Date 22.2˚S 6 Date and 13 Sept. 2009, perhaps related to the 26˚S Cerro Galan swarm observed on 13 Oct. 2009 shown Putana: 5 1 seismometer Sol de Manana: above. Deformation is not observed during 2 seismometers 4 Aug. 2009 − Oct. 2010 − Cerro Peinado Ollague volcano other times between 1992-2011. Feb. 2011 Feb. 2011 Number of earthquakes 3 The deformation can be modeled with a 2 Ollagüe PUNA Array: spherical point source at 1 km depth and a km Lascar: 74 seismometers 1 1 seismometer Dec. 2007 − Last eruption: Unknown volume change of 100,000 cubic m. 23.4˚S 0 20 40 Feb. − May 2010 Oct. 2009 0 Fumarolically active 28˚S 6/1/11 7/1/11 8/1/11 9/1/1110/1/1111/1/1112/1/111/1/12 2/1/123/1/12 Date Intense microseismicity (Clavero et al., 2005) 69.4˚W 68.2˚W 67˚W 69.5˚W 67.5˚W 65.5˚W Legend: Isluga: SERNAGEOMIN (2012) Green triangles: volcanoes in Smithsonian Catalog San Pedro: SERNAGEOMIN (2012) Red circles: ANDIVOLC/PASSCAL seismometer arrays Uturuncu: Sparks et al., (2008) & Jay et al., (2012) Isluga last eruption: 1913 Blue circles: single Geospace seismometers Lascar: Asch et al., (1996) & SERNAGEOMIN (2012) Isluga & Puchuldiza Geyser Fumarolically active -- reported increase Lastarria: Spica et al., (2012) 69.2˚W 69˚W 68.8˚W in 2002-2003 (Cespedes et al., 2004) 68.4˚W 68.2˚W 68˚W PUNA array: Mulcahy et al., (2010) Lowest Error Locations Lowest Error Locations Highest Error Locations Highest Error Locations Number of earthquakes located per day within 25km of Ollague Conclusions Seismometer Seismometer Puchuldiza is active geyser field 10 Volcano Volcano Pleistocene age 21.2˚S 21.2˚S 9 * Within 25 km of each volcano, the following earthquakes were located (all volcano-tectonic): 19.1˚S 19.1˚S OGRE 8 ISLI Ollagüe: 1.5 earthquakes/day for 4 months, maximum 10/day -- 2 definite swarms. Local earthquake example Isluga ISLW Isluga volcano ISLE Ollague OGAZ 7 OGCM Guallatiri: 0.7 earthquakes/day over 10 months, maximum 7/day -- 1 definite & 1 potential swarm. 6 OGAZ SHE Start time: 2010354 12/20/10 02:04:05 OGAZ SHZ Start time: 2010354 12/20/10 02:04:05 ISLG OGEE 5 Olca: 1.6 earthquakes/day, maximum of 10/day, but most of these are mislocated mine explosions. 21.4˚S 21.4˚S Non-mining seismic activity is revealed through analysis of nighttime data and we find persistent 19.3˚S 19.3˚S 4 earthquake activity between Olca and Irruputuncu volcanoes. Number of earthquakes 3 1500.0 1500.0 0 km 12.5 km 25 km Parinacota: 0.1 earthquakes/day over 12 months, maximum 6.day (1 potential swarm in Sept.
Recommended publications
  • VOCALS Site Survey Report
    VOCALS Site Survey 30 September – 12 October 2007 Arica, Iquique, Santiago, Chile Brigitte Baeuerle, Henry Boynton, Bob Hannigan, José Meitín, Vidal Salazar, Rob Wood, Pete Daum, Juan Aravena GENERAL INFORMATION: Area 756,950 sq. km Population: 16,284,741 (2007 estimate) Government Type Republic President Michelle Bachelet Jeria Capital City Santiago GDP per capita $12,600 Unemployment Rate 7.8% Life expectancy 77 years Infant Mortality Rate 8.36 death / 1000 life births Currency unit Peso Highest point 22,572 ft (Nevado Ojos del Salado) Main cities Concepción, Viña del Mar, Valparaiso National Holiday Independence Day, 18 September OVERVIEW Chile is unique for its very long (2,650 miles) and comparatively narrow (maximum 250 miles) shape and for its great variety of natural features. It extends from latitudes 18 to 56 degrees south and contains one of the driest regions in the world and one of the wettest areas in South America. It is bound on the north by Peru, on the northeast by Bolivia, on its long eastern border (3,200 miles) by Argentina and on the west by the Pacific Ocean. In its economy and public services, Chile is one of the most developed countries in the Andean region. Climate: Extending over 38 degrees of latitude, from the tropics to the vicinity of Antarctica, and from sea level to altitudes of over 20,000 feet, Chile has a wide variety of climatic conditions. Extreme aridity prevails over the northern part of the country; the average annual rainfall in this region is 0.04 inches. Temperatures are moderate along the coast throughout the year and more extreme inland, especially in the central basin.
    [Show full text]
  • Hydrothermal Alteration, Fumarolic Deposits and Fluids from Lastarria Volcanic Complex: a Multidisciplinary Study
    Andean Geology 42 (3): 166-196. May, 2016 Andean Geology doi: 10.5027/andgeoV43n2-a02 www.andeangeology.cl Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study *Felipe Aguilera1, Susana Layana2, Augusto Rodríguez-Díaz3, Cristóbal González2, Julio Cortés4, Manuel Inostroza2 1 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 2 Programa de Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected]; [email protected]; [email protected] 3 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04150 México D.F., México. [email protected] 4 Consultor Independiente, Las Docas 4420, La Serena, Chile. [email protected] * Corresponding Author: [email protected] ABSTRACT. A multidisciplinary study that includes processing of Landsat ETM+ satellite images, chemistry of gas condensed, mineralogy and chemistry of fumarolic deposits, and fluid inclusion data from native sulphur deposits, has been carried out in the Lastarria Volcanic Complex (LVC) with the objective to determine the distribution and charac- teristics of hydrothermal alteration zones and to establish the relations between gas chemistry and fumarolic deposits. Satellite image processing shows the presence of four hydrothermal alteration zones, characterized by a mineral
    [Show full text]
  • Geothermal Exploration at Irruputuncu and Olca Volcanoes: Pursuing a Sustainable Mining Development in Chile
    GRC Transactions, Vol. 35, 2011 Geothermal Exploration at Irruputuncu and Olca Volcanoes: Pursuing a Sustainable Mining Development in Chile Nicolás Reyes1, Ariel Vidal2, Ernesto Ramirez2, Knutur Arnason3, Bjarni Richter3, Benedikt Steingrimsson3, Orlando Acosta1, Jorge Camacho1 1Compañía Minera Doña Inés de Collahuasi 2Geohidrología Consultores Ltda. 3ISOR Iceland GeoSurvey Keyword Introduction Chile, Olca & Irruputuncu volcanoes, geothermal exploration, CMDIC (Compañía Minera Doña Inés de Collahuasi) Doña Inés de Collahuasi Mining Company (CMDIC) is the third largest copper producer in Chile. In its commitment to sus- tainable development, and its need for safe and clean energy as part Abstract of its energy matrix, CMDIC has chosen to explore and evaluate geothermal resources in the proximity of its copper mining in the Doña Inés de Collahuasi Mining Company which is the north of Chile (Figure 1). Currently the mining operation requires third major copper producer in Chile is pursuing a sustainable 180MW of electric power, which is mainly derived from fossil development by exploring geothermal resources. Currently the fuels. The company objective is to obtain at least 35MW from mining operation requires 180MW of electric power, which is renewable energy sources by 2015. derived from fossil fuels. However, the company´s objective is CMDIC has a set of geothermal exploration permits in the to obtain at least 35MW from renewable energy sources by 2015. proximity of the mine around the Irruputuncu and Olca volcanoes. The geothermal exploration is focused around the Olca and Irruputuncu volcanoes in the Chilean Altiplano at 4000-5000 m a.s.l. in the vicinity of the copper mine. Irruputuncu is an active dacitic stratovolcano, with fumaroles at the top crater and one acid-sulphate hot spring at the base of the volcano.
    [Show full text]
  • And Gas-Based Geochemical Prospecting Of
    Water- and gas-based geochemical prospecting of geothermal reservoirs in the Tarapacà and Antofagasta regions of northern Chile Tassi, F.1, Aguilera, F.2, Vaselli, O.1,3, Medina, E.2, Tedesco, D.4,5, Delgado Huertas, A.6, Poreda, R.7 1) Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121, Florence, Italy 2) Departamento de Ciencias Geológicas, Universidad Católica del Norte, Av. Angamos 0610, 1280, Antofagasta, Chile 3) CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121, Florence, Italy 4)Department of Environmental Sciences, 2nd University of Naples, Via Vivaldi 43, 81100 Caserta, Italy 5) CNR-IGAG National Research Council, Institute of Environmental Geology and Geo-Engineering, Pzz.e A. Moro, 00100 Roma, Italy. 6) CSIS Estacion Experimental de Zaidin, Prof. Albareda 1, 18008, Granada, Spain. 7) Department of Earth and Environmental Sciences, 227 Hutchinson Hall, Rochester, NY 14627, U.S.A.. Studied area The Andean Central Volcanic Zone, which runs parallel the Central Andean Cordillera crossing from North to This study is mainly focused on the geochemical characteristics of water and gas South the Tarapacà and Antofagasta regions of northern Chile, consists of several volcanoes that have shown phases of thermal fluids discharging in several geothermal areas of northern Chile historical and present activity (e.g. Tacora, Guallatiri, Isluga, Ollague, Putana, Lascar, Lastarria). Such an intense (Fig. 1); volcanism is produced by the subduction process thrusting the oceanic Nazca Plate beneath the South America Plate. The anomalous geothermal gradient related to the geodynamic assessment of this extended area gives El Tatio, Apacheta, Surire, Puchuldiza-Tuya also rise to intense geothermal activity not necessarily associated with the volcanic structures.
    [Show full text]
  • Chilean Notes, 1962-1963
    CHILEAN NOTES ' CHILEAN NOTES, 1962-1963 BY EVELIO ECHEVARRfA C. (Three illustrations: nos. 2I-23) HE mountaineering seasons of I 962 and I 963 have seen an increase in expeditionary activity beyond the well-trodden Central Andes of Chile. This activity is expected to increase in the next years, particularly in Bolivia and Patagonia. In the Central Andes, \vhere most of the mountaineering is concen­ trated, the following first ascents were reported for the summer months of I962: San Augusto, I2,o6o ft., by M. Acufia, R. Biehl; Champafiat, I3,I90 ft., by A. Diaz, A. Figueroa, G. and P. de Pablo; Camanchaca (no height given), by G. Fuchloger, R. Lamilla, C. Sepulveda; Los Equivo­ cados, I3,616 ft., by A. Ducci, E. Eglington; Puente Alto, I4,764 ft., by F. Roulies, H. Vasquez; unnamed, I4,935 ft., by R. Biehl, E. Hill, IVI. V ergara; and another unnamed peak, I 5,402 ft., by M. Acufia, R. Biehl. Besides the first ascent of the unofficially named peak U niversidad de Humboldt by the East German Expedition, previously reported by Mr. T. Crombie, there should be added to the credit of the same party the second ascent of Cerro Bello, I7,o6o ft. (K. Nickel, F. Rudolph, M. Zielinsky, and the Chilean J. Arevalo ), and also an attempt on the un­ climbed North-west face of Marmolejo, 20,0I3 ft., frustrated by adverse weather and technical conditions of the ice. In the same area two new routes were opened: Yeguas Heladas, I5,7I5 ft., direct by the southern glacier, by G.
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Volcán Lascar
    Volcán Lascar Región: Antofagasta Provincia: El Loa Comuna: San Pedro de Atacama Coordenadas: 21°22’S – 67°44’O Poblados más cercanos: Talabre – Camar – Socaire Tipo: Estratovolcán Altura: 5.592 m s.n.m. Diámetro basal: 8.9 km Área basal: 62.2 km2 Volumen estimado: 28.5 km3 Última actividad: 2015 Última erupción mayor: 1993 Volcán Lascar. Vista desde el norte Ranking de riesgo (Fotografía: Gabriela Jara, SERNAGEOMIN) 14 específico: Generalidades El volcán Láscar corresponde a un estratovolcán compuesto, elongado en dirección este-oeste, activo desde hace unos 240 ka y emplazado en el margen oeste de la planicie altiplánica. Está conformado por lavas andesíticas, que alcanzan más de 10 km de longitud, y por potentes lavas dacíticas que se extienden hasta 5 km, las que fueron emitidas desde los flancos NO a SO. La lava más reciente se estima en 7 mil años de antigüedad. En los alrededores del volcán se reconocen depósitos de flujo y caída piroclástica, además de numerosos cráteres de impacto asociados a la eyección de bombas durante erupciones plinianas y subplinianas. El principal evento eruptivo durante su evolución se denomina Ignimbrita Soncor, generado hace unos 27 ka al oeste del volcán y con un volumen estimado cercano a los 10 km3. En la cima de este volcán se observan seis cráteres, algunos anidados, y el central de estos se encuentra activo. Registro eruptivo Este volcán ha presentado alrededor de 30 erupciones explosivas desde el siglo XIX, lo que lo convierte en el volcán más activo del norte de Chile. Estos eventos han consistido típicamente en erupciones vulcanianas de corta duración, con emisión de ceniza fina y proyecciones balísticas en un radio de 5 km, donde el último evento de este tipo ocurrió el 30 de octubre del 2015.
    [Show full text]
  • Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the He Isotope Signatures of Geothermal Systems in Chile
    PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 EFFECTS OF VOLCANISM, CRUSTAL THICKNESS, AND LARGE SCALE FAULTING ON THE HE ISOTOPE SIGNATURES OF GEOTHERMAL SYSTEMS IN CHILE Patrick F. DOBSON1, B. Mack KENNEDY1, Martin REICH2, Pablo SANCHEZ2, and Diego MORATA2 1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA 2Departamento de Geología y Centro de Excelencia en Geotermia de los Andes, Universidad de Chile, Santiago, CHILE [email protected] agree with previously published results for the ABSTRACT Chilean Andes. The Chilean cordillera provides a unique geologic INTRODUCTION setting to evaluate the influence of volcanism, crustal thickness, and large scale faulting on fluid Measurement of 3He/4He in geothermal water and gas geochemistry in geothermal systems. In the Central samples has been used to guide geothermal Volcanic Zone (CVZ) of the Andes in the northern exploration efforts (e.g., Torgersen and Jenkins, part of Chile, the continental crust is quite thick (50- 1982; Welhan et al., 1988) Elevated 3He/4He ratios 70 km) and old (Mesozoic to Paleozoic), whereas the (R/Ra values greater than ~0.1) have been interpreted Southern Volcanic Zone (SVZ) in central Chile has to indicate a mantle influence on the He isotopic thinner (60-40 km) and younger (Cenozoic to composition, and may indicate that igneous intrusions Mesozoic) crust. In the SVZ, the Liquiñe-Ofqui Fault provide the primary heat source for the associated System, a major intra-arc transpressional dextral geothermal fluids. Studies of helium isotope strike-slip fault system which controls the magmatic compositions of geothermal fluids collected from activity from 38°S to 47°S, provides the opportunity wells, hot springs and fumaroles within the Basin and to evaluate the effects of regional faulting on Range province of the western US (Kennedy and van geothermal fluid chemistry.
    [Show full text]
  • Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
    Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions.
    [Show full text]
  • Report on Cartography in the Republic of Chile 2011 - 2015
    REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 ARMY OF CHILE MILITARY GEOGRAPHIC INSTITUTE OF CHILE REPORT ON CARTOGRAPHY IN THE REPUBLIC OF CHILE 2011 - 2015 PRESENTED BY THE CHILEAN NATIONAL COMMITTEE OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AT THE SIXTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AUGUST 2015 1 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 CONTENTS Page Contents 2 1: CHILEAN NATIONAL COMMITTEE OF THE ICA 3 1.1. Introduction 3 1.2. Chilean ICA National Committee during 2011 - 2015 5 1.3. Chile and the International Cartographic Conferences of the ICA 6 2: MULTI-INSTITUTIONAL ACTIVITIES 6 2.1 National Spatial Data Infrastructure of Chile 6 2.2. Pan-American Institute for Geography and History – PAIGH 8 2.3. SSOT: Chilean Satellite 9 3: STATE AND PUBLIC INSTITUTIONS 10 3.1. Military Geographic Institute - IGM 10 3.2. Hydrographic and Oceanographic Service of the Chilean Navy – SHOA 12 3.3. Aero-Photogrammetric Service of the Air Force – SAF 14 3.4. Agriculture Ministry and Dependent Agencies 15 3.5. National Geological and Mining Service – SERNAGEOMIN 18 3.6. Other Government Ministries and Specialized Agencies 19 3.7. Regional and Local Government Bodies 21 4: ACADEMIC, EDUCATIONAL AND TRAINING SECTOR 21 4.1 Metropolitan Technological University – UTEM 21 4.2 Universities with Geosciences Courses 23 4.3 Military Polytechnic Academy 25 5: THE PRIVATE SECTOR 26 6: ACKNOWLEDGEMENTS AND ACRONYMS 28 ANNEX 1. List of SERNAGEOMIN Maps 29 ANNEX 2. Report from CENGEO (University of Talca) 37 2 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 PART ONE: CHILEAN NATIONAL COMMITTEE OF THE ICA 1.1: Introduction 1.1.1.
    [Show full text]