Modelling Integrated Weed Management of an Invasive 41, 547–560 Shrub in Tropical Australia
Journal of Applied Blackwell Publishing, Ltd. Ecology 2004 Modelling integrated weed management of an invasive 41, 547–560 shrub in tropical Australia YVONNE M. BUCKLEY*, MARK REES*†, QUENTIN PAYNTER‡ and MARK LONSDALE§ *NERC Centre for Population Biology and †Department of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK; ‡CSIRO, Division of Entomology, Tropical Ecosystems Research Centre, PMB 44 Winnellie, NT 0822, Australia; and §CSIRO, Division of Entomology, GPO Box 1700, Canberra, ACT 2601, Australia Summary 1. Where biocontrol programmes for invasive plants are in place, only one-third are fully successful. Integrated weed management (IWM) emphasizes the use of several complementary control measures. 2. We used models of increasing complexity to determine which parameters affect site occupancy of an invasive shrub, Mimosa pigra, in tropical Australia. Two introduced biocontrol agents have spatial effects on both plant fecundity and the probability of recolonization after senescence. We incorporated biocontrol effects into IWM models with small-scale disturbance, such as grazing and pig-rooting, and large-scale disturbance, such as mechanical control, herbicide and fire. The models were parameterized from experimental and field data. 3. The models indicated that reduction in fecundity is not the most important impact of biocontrol; rather it is defoliation at the edges of stands, allowing grasses to out-compete M. pigra seedlings. We demonstrated that biocontrol alone is only successful at low levels of small-scale disturbance and seedling survival and, even then, current biocontrol agents would take decades to reduce a stand to < 5% site occupancy. 4. Our model predicts the most successful IWM strategy to be an application of herbicide in year 1, mechanical control + fire in year 2 and herbicide in year 3, with reduction of small-scale disturbance where possible.
[Show full text]