remote sensing Article Performance of the CMORPH and GPM IMERG Products over the United Arab Emirates Tareefa S. Alsumaiti 1, Khalid Hussein 1,2,*, Dawit T. Ghebreyesus 3 and Hatim O. Sharif 3 1 Geography and Urban Sustainability Department, College of Humanities and Social Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, UAE;
[email protected] 2 Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309, USA 3 Department of Civil and Environmental Engineering, University of Texas and San Antonio, San Antonio, TX 78249, USA;
[email protected] (D.T.G.);
[email protected] (H.O.S.) * Correspondence:
[email protected] Received: 18 March 2020; Accepted: 29 April 2020; Published: 1 May 2020 Abstract: Satellite-based precipitation products are becoming available at very high temporal and spatial resolutions, which has accelerated their use in various hydro-meteorological and hydro-climatological applications. Because the quantitative accuracy of such products is affected by numerous factors related to atmospheric and terrain properties, validating them over different regions and environments is needed. This study investigated the performance of two high-resolution global satellite-based precipitation products: the climate prediction center MORPHing technique (CMORPH) and the latest version of the Integrated Multi-SatellitE Retrievals for the Global Precipitation Mission (GPM) algorithm (IMERG), V06, over the United Arab Emirates from 2010 through 2018. The estimates of the products and that of 71 in situ rain gauges distributed across the country were compared by employing several common quantitative, categorical, and graphical statistical measures at daily, event-duration, and annual temporal scales, and at the station and study area spatial scales.