Stuart Hameroff (1947-)

Total Page:16

File Type:pdf, Size:1020Kb

Stuart Hameroff (1947-) Stuart Hameroff (1947-) Stuart Hameroff, a medical doctor specializing in anesthesiology, knew that Van der Waals- London forces in hydrophobic pockets of various neuronal proteins had been proposed as the mechanisms by which anesthetic gases selectively erase consciousness. Anesthetics bind by their own London force attractions with electron clouds of the hydrophobic pocket, presumably impairing normally-occurring London forces governing the protein switching required for consciousness. Biologist Charles Sherrington had speculated in the 1950's that information might be stored in the brain in microtubules, lattices of tubulin dimers. Hameroff decided that the bits of information might be stored in discrete states of tubulin, interacting by dipole-dipole interactions with neighboring tubulin states. These structures are orders of magnitude smaller than the biological cells, providing vast amounts of potential information storage. A hydrophobic pocket in tubulin develops electron resonance rings in the pocket. Single electrons in each ring repel each other, as the net dipole moment of their electron cloud flips under external London force oscillations. Although Hameroff did not provide a specific read-write mechanism, he modeled the tubulin states as cellular automata (these "cells" are the fundamental units of John Conway's "Game of Life") that would need to change states at synchronized time steps, governed by the coherent voltage oscillations. (Although brain wave oscillations are well-known, those observed are at very low frequencies compared to the proposed oscillation in the microtubules - 109/sec.) Each automaton cell interacts with its neighbor cells at discrete, synchronized time steps, the state of each cell at any particular time step determined by its state and its neighbor cell states at the previous time step, and rules governing the interactions. In such ways, using simple neighbor interactions in simple lattice grids, cellular automata might perform complex computations and generate complex patterns. The estimated total information processing in the tubulin of a single neuron is of the same order of magnitude as that for the entire brain, if storage is at the synapses of the neural networks. This surprised (and annoyed) some cognitive scientists, but again, no plausible read/write mechanism was proposed for either computational model. In 1989, Roger Penrose published The Emperor's New Mind, which was followed in 1994 by Shadows of the Mind. There he proposed a solution to the measurement problem in quantum mechanics by extending the standard framework's idea of a random collapse (or reduction) of the wave function with a more "objective" collapse he called "objective reduction" (OR). Objective reduction would terminate the deterministic evolution of the wave function predicted by the Schrödinger equation. (Another scheme to force the collapse was proposed by Ghirardi, Rimini, and Weber.) Penrose initially looked to quantum gravity as the driving force behind OR. Note that the traditional connection between consciousness and the collapse of the wave-function was the result of early work by John von Neumann and Eugene Wigner. They assumed that a conscious observer was needed to make a measurement (producing at least one bit of information). Without an observer, goes their argument, the wave-function would not collapse, leading to paradoxes like Schrödinger's Cat. Many other physicists deny that a conscious observer is necessary for a physical measurement. [See our solution to the measurement problem.] Hameroff and Penrose began working together in the 1990's to develop an "orchestrated" version of objective reduction. The Orch OR Scheme According to Orch OR, the (objective) reduction is not the entirely random process of standard theory, but acts according to some non-computational new physics (see Penrose 1989, 1994). The idea is that consciousness is associated with this (gravitational) OR process, but occurs significantly only when the alternatives are part of some highly organized structure, so that such occurrences of OR occur in an extremely orchestrated form. Only then does a recognizably conscious event take place. On the other hand, we may consider that any individual occurrence of OR would be an element of proto-consciousness. The OR process is considered to occur when quantum superpositions between slightly differing space-times take place, differing from one another by an integrated space-time measure which compares with the fundamental and extremely tiny Planck (4-volume) scale of space-time geometry. Since this is a 4-volume Planck measure, involving both time and space, we find that the time measure would be particularly tiny when the space-difference measure is relatively large (as with Schrödinger's cat), but for extremely tiny space-difference measures, the time measure might be fairly long, such as some significant fraction of a second. We shall be seeing this in more detail shortly, together with its particular relevance to microtubules. In any case, we recognize that the elements of proto-consciousness would be intimately tied in with the most primitive Planck-level ingredients of space-time geometry, these presumed 'ingredients' being taken to be at the absurdly tiny level of 10−35m and 10−43s, a distance and a time some 20 orders of magnitude smaller than those of normal particle-physics scales and their most rapid processes. These scales refer only to the normally extremely tiny differences in space-time geometry between different states in superposition, and OR is deemed to take place when such space-time differences reach the Planck level. Owing to the extreme weakness of gravitational forces as compared with those of the chemical and electric forces of biology, the energy EG is liable to be far smaller than any energy that arises directly from biological processes. However, EG is not to be thought of as being in direct competition with any of the usual biological energies, as it plays a completely different role, supplying a needed energy uncertainty that then allows a choice to be made between the separated space-time geometries. It is the key ingredient of the computation of the reduction time τ. Nevertheless, the extreme weakness of gravity tells us there must be a considerable amount of material involved in the coherent mass displacement between superposed structures in order that τ can be small enough to be playing its necessary role in the relevant OR processes in the brain. These superposed structures should also process information and regulate neuronal physiology. According to Orch OR, microtubules are central to these structures, and some form of biological quantum computation in microtubules (most probably primarily in the more symmetrical A-lattice microtubules) would have to have evolved to provide a subtle yet direct connection to Planck-scale geometry, leading eventually to discrete moments of actual conscious experience. ("Consciousness in the Universe: Neuroscience, Quantum Space-Time Geometry and Orch OR," Journal of Cosmology, 2011, Vol. 14) Microtubules Hameroff and colleagues Travis Craddock and Jack Tuszynski have made a strong case for memory storage in microtubules, quite apart from the claims of the Penrose-Hameroff Orch-OR scheme. Microtubules are tiny, but highly ordered structures that could encode vast amounts of information per neuron. In a 2012 article, Hameroff suggests the Ca2+ - Calmodulin complex CaMKII may encode information in the microtubules. CaMKII is a serine-threonine protein kinase that has been known for years to play a major role in cell signaling and can also function as a molecular switch, staying in an active state long after the bursts of post-synaptic Ca2+ have returned to base levels. CaMKII is implicated in the standard theory of long-term potentiation by the generation of new synapses. It accounts for more than one percent of all the proteins in the brain. Hameroff notes that the geometry of CaMKII - a snow-flake shaped double hexagon of twin hexameric rings - and the diameter - 20nm - make the CaMKII a nice fit with microtubules - 15nm internal diameter and 25nm external (and up to 25 microns in length!). Each monomer is an EF hand motif consisting of two alpha-helices linked by a short "loop region." The helices can each bind two Ca2+ ions, and change their configuration like an index finger and thumb to become an active Ca2+ - Calmodulin complex. Each of the kinase monomers can activate separately, phosphorylating (or not) a substrate protein. So Hameroff points out that the twelve units in the holoenzyme can encode 12 bits of digital information. He says: In this paper we evaluated possible information inputs to microtubules in the context of brain neuronal memory encoding and long-term potentiation (LTP). A key intermediary in LTP involves the hexagonal holoenzyme calcium-calmodulin kinase II. When activated by synaptic calcium influx, the snowflake-shaped CaMKII extends sets of 6 foot-like kinase domains outward, each domain able to phosphorylate a substrate or not (thus convey 1 bit of information). As CaMKII activation represents synaptic information, subsequent phosphorylation by CaMKII of a particular substrate may encode memory, e.g. as ordered arrays of 6 bits (one ‗byte‘). We used molecular modeling to examine feasibility of collective phosphorylation (and thus memory encoding) by CaMKII kinase domains of tubulins in a microtubule lattice. We show, first, complementary electrostatics and mutual attraction between
Recommended publications
  • 'Shadows of the Mind'
    'Shadows of the Mind' © 1997−2009, Millennium Mathematics Project, University of Cambridge. Permission is granted to print and copy this page on paper for non−commercial use. For other uses, including electronic redistribution, please contact us. Jan 2002 Reviews 'Shadows of the Mind' reviewed by Patrick R. Andrews Shadows of the Mind Roger Penrose This book attempts to take a firm grip on a corner of the slippery issue of consciousness. It is directly related to Roger Penrose's earlier, hugely successful work, The Emperor's New Mind. Although much space is devoted to painstaking replies to the criticisms made of the earlier book, this is not simply a sequel. It contains a number of new ideas, some of which are still being actively debated seven years after the book was first published. Penrose signposts some alternative routes through his extensive material, depending upon whether the reader requires a closely−argued treatment or a painless overview. Although few equations appear in the text, there are several pages of symbolic reasoning that a casual reader may find daunting. The decision not to get too tied up in definitions of mind, consciousness, thinking and intelligence etc, is made explicit at an early stage and these are treated largely as synonyms throughout. The book is divided into two parts. Part I attempts to convince the reader that the brain can achieve at least one thing which no computer ever can. What Penrose seems to be getting at, in essence, is that mathematicians are capable of reaching conclusions, via some mysterious process of insight, which are, in principle, beyond computation in the sense that Turing understood it (ie a step−by−step recipe applied to input data in order to generate an output).
    [Show full text]
  • Theoretical Models of Consciousness: a Scoping Review
    brain sciences Review Theoretical Models of Consciousness: A Scoping Review Davide Sattin 1,2,*, Francesca Giulia Magnani 1, Laura Bartesaghi 1, Milena Caputo 1, Andrea Veronica Fittipaldo 3, Martina Cacciatore 1, Mario Picozzi 4 and Matilde Leonardi 1 1 Neurology, Public Health, Disability Unit—Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; [email protected] (F.G.M.); [email protected] (L.B.); [email protected] (M.C.); [email protected] (M.C.); [email protected] (M.L.) 2 Experimental Medicine and Medical Humanities-PhD Program, Biotechnology and Life Sciences Department and Center for Clinical Ethics, Insubria University, 21100 Varese, Italy 3 Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; veronicaandrea.fi[email protected] 4 Center for Clinical Ethics, Biotechnology and Life Sciences Department, Insubria University, 21100 Varese, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-2394-2709 Abstract: The amount of knowledge on human consciousness has created a multitude of viewpoints and it is difficult to compare and synthesize all the recent scientific perspectives. Indeed, there are many definitions of consciousness and multiple approaches to study the neural correlates of consciousness (NCC). Therefore, the main aim of this article is to collect data on the various theories of consciousness published between 2007–2017 and to synthesize them to provide a general overview of this topic. To describe each theory, we developed a thematic grid called the dimensional model, which qualitatively and quantitatively analyzes how each article, related to one specific theory, debates/analyzes a specific issue.
    [Show full text]
  • Mind Byte” Series Disperses Particles from the Consciousness Documentary “The Deeper You Go”
    STORY LLC CONTACT 11TH STORY LLC FOR IMMEDIATE RELEASE Tel: 414.301.1102 or 2 [email protected] November 4, 2014 “MIND BYTE” SERIES DISPERSES PARTICLES FROM THE CONSCIOUSNESS DOCUMENTARY “THE DEEPER YOU GO” “Mind Byte” an ongoing series of one minute interview clips to promote the 2015 release of “The Deeper You Go” launched with controversial biologist Rupert Sheldrake. In “The Deeper You Go” Milwaukee filmmakers Lora Nigro and Kevin Rutkowski, reunited with Los Angeles cinematographer Vincent Gaudes, interviewed keynote speakers on the fly at The Toward a Science of Consciousness Conference organized and sponsored by The Center for Consciousness Studies; University of Arizona this April. Setting up camp in the hotel courtyard where the conference was held, they shot guerilla style with one HD camcorder and boom microphone but seized a hotel storage closet for the makeshift indoor shots. Known luminaries and TED talkers Deepak Chopra, Susan Blackmore, David Chalmers, Dan Dennett, Stuart Hameroff, John Searle, Stanislas Dehaene and NY Times best selling author Eben Alexander, Proof of Heaven are among the rock star line up. The Sneak Preview demo introduced this September captured the ensuing debate in quick point-counter point edits, suggesting that the sharpest minds in the field don’t agree much on the nature of mind. “Consciousness” the film’s featured soundtrack single also became available web-wide. Nigro and Rutkowski’s background as recording artists, whose lyrical explorations of the meaning of existence, provides a context for their interest in the subject. Consciousness is fundamental to our reality. Once the domain of religion, the study of human consciousness has exploded in the last decades, making headway in the fields of neuroscience, psychology, philosophy and other disciplines.
    [Show full text]
  • 14 Consciousness in the Universe an Updated Review of the “Orch
    “9x6” b2237 Biophysics of Consciousness: A Foundational Approach FA Biophysics of Consciousness: A Foundational Approach R. R. Poznanski, J. A. Tuszynski and T. E. Feinberg Copyright © 2016 World Scientific, Singapore. 14 CONSCIOUSNESS IN THE UNIVERSE AN UPDATED REVIEW OF THE “ORCH OR” THEORY Stuart R. Hameroff,* and Roger Penrose† * Anesthesiology and Psychology, Center for Consciousness Studies, Banner-University Medical Center The University of Arizona, Tucson, Arizona, USA † Mathematical Institute and Wadham College, University of Oxford, Oxford, UK Abstract The nature of consciousness, the mechanism by which it occurs in the brain, and its ultimate place in the universe are unknown. We proposed in the mid 1990’s that consciousness depends on biologically “orchestrated” coherent quantum processes in collections of microtubules within brain neurons, that these quantum processes correlate with, and regulate, neuronal synaptic and membrane activity, and that the continuous Schrödinger evolution of each such process terminates in accordance with the specific Diósi–Penrose (DP) scheme of “ objective reduction” (“OR”) of the quantum state. This orchestrated OR activity (“Orch OR”) is taken to result in moments of conscious awareness and/or choice. The DP form of OR is related to the fundamentals of quantum mechanics and space–time geometry, so Orch OR suggests that there is a connection between the brain’s biomolecular processes and the basic structure of the universe. Here we review Orch OR in light of criticisms and developments in quantum biology, neuroscience, physics and cosmology. We also introduce novel suggestions of (1) beat frequencies of faster Orch OR microtubule dynamics (e.g. megahertz) as a possible source 517 bb2237_Ch-14.indd2237_Ch-14.indd 551717 44/15/2016/15/2016 112:31:372:31:37 PPMM FA b2237 Biophysics of Consciousness: A Foundational Approach “9x6” 518 S.
    [Show full text]
  • "Orchestrated Objective Reduction"(Orch OR)
    Orchestrated Objective Reduction of Quantum Coherence in Brain Microtubules: The "Orch OR" Model for Consciousness Stuart Hameroff & Roger Penrose, In: Toward a Science of Consciousness - The First Tucson Discussions and Debates, eds. Hameroff, S.R., Kaszniak, A.W. and Scott, A.C., Cambridge, MA: MIT Press, pp. 507-540 (1996) Stuart Hameroff and Roger Penrose ABSTRACT Features of consciousness difficult to understand in terms of conventional neuroscience have evoked application of quantum theory, which describes the fundamental behavior of matter and energy. In this paper we propose that aspects of quantum theory (e.g. quantum coherence) and of a newly proposed physical phenomenon of quantum wave function "self-collapse"(objective reduction: OR -Penrose, 1994) are essential for consciousness, and occur in cytoskeletal microtubules and other structures within each of the brain's neurons. The particular characteristics of microtubules suitable for quantum effects include their crystal-like lattice structure, hollow inner core, organization of cell function and capacity for information processing. We envisage that conformational states of microtubule subunits (tubulins) are coupled to internal quantum events, and cooperatively interact (compute) with other tubulins. We further assume that macroscopic coherent superposition of quantum-coupled tubulin conformational states occurs throughout significant brain volumes and provides the global binding essential to consciousness. We equate the emergence of the microtubule quantum coherence with pre-conscious processing which grows (for up to 500 milliseconds) until the mass-energy difference among the separated states of tubulins reaches a threshold related to quantum gravity. According to the arguments for OR put forth in Penrose (1994), superpositioned states each have their own space-time geometries.
    [Show full text]
  • Chapter 5 the "Quantum Soul": a Scientific Hypothesis
    Chapter 5 The "Quantum Soul": A Scientific Hypothesis Stuart Hameroff and Deepak Chopra Abstract The concept of consCiousness existing outside the body (e.g. near-death and out-of body experiences, NDE/OBEs, or after death, indicative of a 'soul') is a staple of religious traditions, but shunned by conventional science because of an apparent lack of rational explanation. However conventional science based entirely on classical physics cannot account for normal in-the-brain consciousness. The Penrose-Hameroff 'Orch OR' model is a quantum approach to consciousness, con­ necting brain processes (microtubule quantum computations inside neurons) to fluctuations in fundamental spacetime geometry, the fine scale structure of the uni­ verse. Recent evidence for significant quantum coherence in warm biological sys­ tems, scale-free dynamics and end-of-life brain activity support the notion of a quantum basis for consciousness which could conceivably exist independent of biology in various scalar planes in spacetime geometry. Sir Roger Penrose does not necessarily endorse such proposals which relate to his ideas in physics. Based on Orch OR, we offer a scientific hypothesis for a 'quantum soul'. 5.1 Brain, Mind, and Near-Death Experiences The idea that conscious awareness can exist after bodily death, generally referred to as the "soul," has been inherent in Eastern and Western religions for thousands of years. In some traditions, memories and awareness may be transferred after death to other lifetimes: reincarnation. In addition to beliefs based on religion, innumerable S. Hameroff(L01) Departments of Anesthesiology and Psychology, Center for Consciousness Studies, The University of Arizona Medical Center, 1501N Campbell Ave, Tucson, AZ 85724, USA e-mail: [email protected] D.
    [Show full text]
  • More Neural Than Thou (Reply to Pat Churchland's "Brainshy")
    More Neural Than Thou (Reply to Pat Churchland's "Brainshy") Stuart Hameroff in: Toward a Science of Consciousness II: The 1996 Tucson Discussions and Debates Editors Stuart Hameroff, Alfred Kaszniak, Alwyn Scott MIT Press, Cambridge MA 1998 Introduction: Neuralism In "Brainshy: Non-neural theories of conscious experience," (this volume) Patricia Churchland considers three "non-neural" approaches to the puzzle of consciousness: 1) Chalmers' fundamental information, 2) Searle's "intrinsic" property of brain, and 3) Penrose-Hameroff quantum phenomena in microtubules. In rejecting these ideas, Churchland flies the flag of "neuralism." She claims that conscious experience will be totally and completely explained by the dynamical complexity of properties at the level of neurons and neural networks. As far as consciousness goes, neural network firing patterns triggered by axon-to-dendrite synaptic chemical transmissions are the fundamental correlates of consciousness. There is no need to look elsewhere. However Churchland's "neuralism" and allegiance to the brain-as-computer doctrine obscures inconvenient details. For example: 1. Neurotransmitter vesicle release is probabilistic (and possibly non-computable). Only about 15% of axonal action potentials reaching pre-synaptic terminals result in actual release of neurotransmitter vesicle. Beck and Eccles (1992) suggested quantum indeterminacy acts here. 2. Apart from chemical synapses, primitive electrotonic gap junctions may play an important role in consciousness. For example gap junctions may mediate coherent 40 Hz-type activity implicated in binding in vision and self (Jibu, 1990; Hameroff, 1996). 3. It is quite possible that consciousness occurs primarily in dendritic-dendritic processing and that axonal firings support primarily automatic, non-conscious activities (e.g.
    [Show full text]
  • Shadows of the Mind: a Search for the Missing Science of Consciousness Pdf
    FREE SHADOWS OF THE MIND: A SEARCH FOR THE MISSING SCIENCE OF CONSCIOUSNESS PDF Roger Penrose | 480 pages | 03 Oct 1995 | Vintage Publishing | 9780099582113 | English | London, United Kingdom Shadows of the Mind - Wikipedia Skip to search form Skip to main content You are currently Shadows of the Mind: A Search for the Missing Science of Consciousness. Some features of the site may not work correctly. Penrose Published Psychology, Computer Science. From the Publisher: A New York Times bestseller when it appeared inRoger Penrose's The Emperor's New Mind was universally hailed as a marvelous survey of modern physics as well as a brilliant reflection on the human mind, offering a new perspective on the scientific landscape and a visionary glimpse of the possible future of science. Save to Library. Create Alert. Launch Research Feed. Share This Paper. Penrose Computational Complexity: A Modern Approach. Arora, B. Barak Capra, P. Luisi Figures and Topics from this paper. Citation Type. Has PDF. Publication Type. More Filters. On Gravity's role in Quantum State Reduction. Open Access. Research Feed. Consciousness and Complexity. View 1 excerpt, cites background. Artificial Intelligence: A New Synthesis. Can quantum probability provide a new direction for cognitive modeling? The Newell Test for a theory of cognition. Dynamical Cognitive Science. View 4 excerpts, cites background. References Publications referenced by this paper. Minds, Brains, and Programs. Highly Influential. View 4 excerpts, references background. A logical calculus of the ideas immanent in nervous activity. Simulating physics with computers. Neural networks and physical systems with Shadows of the Mind: A Search for the Missing Science of Consciousness collective computational abilities.
    [Show full text]
  • 6 Consciousness, Neurobiology and Quantum Mechanics: the Case for a Connection
    6 Consciousness, Neurobiology and Quantum Mechanics: The Case for a Connection Stuart Hameroff Summary. Consciousness is generally considered to emerge from synaptic com- putation among brain neurons, but this approach cannot account for its critical features. The Penrose–Hameroff “Orch OR” model suggests that consciousness is a sequence of quantum computations in microtubules within brain neurons, shielded from decoherence to reach threshold for objective reduction (OR), the Penrose quantum gravity solution to the measurement problem. The quantum computations are “orchestrated” by neuronal/synaptic inputs (hence “Orch OR”), and extend throughout cortex by tunneling through gap junctions. Each Orch OR is proposed as a conscious event, akin to Whitehead’s philosophical “occasion of experience”, occurring in concert with brain electrophysiology. This chapter discusses the need for such an approach and its neurobiological requirements. 6.1 Introduction: The Problems of Consciousness Consciousness involves phenomenal experience, self-awareness, feelings, choices, control of actions, a model of the world, etc. But what is it? Is con- sciousness something specific, or merely a byproduct of information process- ing? Whatever it is, consciousness is a multifaceted puzzle. Despite enormous strides in behavioral and brain science, essential features of consciousness continue to elude explanation. Unresolved problems include: 1. Neural correlates of conscious perception apparently occur too late – 150 to 500 milliseconds (ms) after impingement on our sense organs – to have causal efficacy in seemingly conscious perceptions and willful actions, often initiated or completed within 100 ms after sensory impingement. For example, in the color phi and cutaneous rabbit anomalies, the brain apparently fills in conscious sensory information that is not yet avail- able [130, 71, 40].
    [Show full text]
  • Neuroscience, Quantum Space-Time Geometry and Orch OR Theory
    Journal of Cosmology, 2011, Vol. 14. JournalofCosmology.com, 2011 Consciousness in the Universe: Neuroscience, Quantum Space-Time Geometry and Orch OR Theory Roger Penrose, PhD, OM, FRS1, and Stuart Hameroff, MD2 1Emeritus Rouse Ball Professor, Mathematical Institute, Emeritus Fellow, Wadham College, University of Oxford, Oxford, UK 2Professor, Anesthesiology and Psychology, Director, Center for Consciousness Studies, The University of Arizona, Tucson, Arizona, USA Abstract The nature of consciousness, its occurrence in the brain, and its ultimate place in the universe are unknown. We proposed in the mid 1990's that consciousness depends on biologically 'orchestrated' quantum computations in collections of microtubules within brain neurons, that these quantum computations correlate with and regulate neuronal activity, and that the continuous Schrödinger evolution of each quantum computation terminates in accordance with the specific Diósi–Penrose (DP) scheme of 'objective reduction' of the quantum state (OR). This orchestrated OR activity (Orch OR) is taken to result in a moment of conscious awareness and/or choice. This particular (DP) form of OR is taken to be a quantum-gravity process related to the fundamentals of spacetime geometry, so Orch OR suggests a connection between brain biomolecular processes and fine-scale structure of the universe. Here we review and update Orch OR in light of criticisms and developments in quantum biology, neuroscience, physics and cosmology. We conclude that consciousness plays an intrinsic role in the universe. KEY WORDS: Consciousness, microtubules, OR, Orch OR, quantum computation, quantum gravity 1. Introduction: Consciousness, Brain and Evolution Consciousness implies awareness: subjective experience of internal and external phenomenal worlds. Consciousness is central also to understanding, meaning and volitional choice with the experience of free will.
    [Show full text]
  • Discovery of Quantum Vibrations in 'Microtubules' Corroborates Theory of Consciousness 16 January 2014
    Discovery of quantum vibrations in 'microtubules' corroborates theory of consciousness 16 January 2014 A review and update of a controversial 20-year-old (and now at MIT), corroborates the pair's theory and theory of consciousness published in Physics of suggests that EEG rhythms also derive from Life Reviews claims that consciousness derives deeper level microtubule vibrations. In addition, from deeper level, finer scale activities inside brain work from the laboratory of Roderick G. Eckenhoff, neurons. The recent discovery of quantum MD, at the University of Pennsylvania, suggests vibrations in "microtubules" inside brain neurons that anesthesia, which selectively erases corroborates this theory, according to review consciousness while sparing non-conscious brain authors Stuart Hameroff and Sir Roger Penrose. activities, acts via microtubules in brain neurons. They suggest that EEG rhythms (brain waves) also derive from deeper level microtubule vibrations, "The origin of consciousness reflects our place in and that from a practical standpoint, treating brain the universe, the nature of our existence. Did microtubule vibrations could benefit a host of consciousness evolve from complex computations mental, neurological, and cognitive conditions. among brain neurons, as most scientists assert? Or has consciousness, in some sense, been here all The theory, called "orchestrated objective along, as spiritual approaches maintain?" ask reduction" ('Orch OR'), was first put forward in the Hameroff and Penrose in the current review. "This mid-1990s
    [Show full text]
  • Why We Shouldn't Fault Lucas and Penrose for Continuing to Believe In
    Why we shouldn’t fault Lucas and Penrose for continuing to believe in the Gödelian argument against computationalism & how we should, instead, use Gödel’s reasoning to define logical satisfaction , logical truth , logical soundness , and logical completeness verifiably, and unarguably Bhupinder Singh Anand 1 The only fault we can fairly lay at Lucas’ and Penrose’s doors, for continuing to believe in the essential soundness of the Gödelian argument, is their naïve faith in, first, non-verifiable assertions in standard expositions of classical theory, and, second, in Gödel’s unvalidated interpretation of his own formal reasoning. We show why their faith is misplaced in both instances. 1. Introduction Although most reasoned critiques (such as, for instance, [Bo90], [Br00], [Da93], [Fe96], [La98], [Le69], [Le89], [Pu95]) of Lucas’ and Penrose’s arguments against computationalism are unassailable, they do not satisfactorily explain why Lucas and Penrose - reasonable men, both - remain convinced of the essential soundness of their own arguments ([Lu96], [Pe96]). 1 The author is an independent scholar. E-mail: [email protected]; [email protected]. Postal address: 32, Agarwal House, D Road, Churchgate, Mumbai - 400 020, INDIA. Tel: +91 (22) 2281 3353. Fax: +91 (22) 2209 5091. 2 A less technically critical review of their arguments is, indeed, necessary to appreciate the reasonability of their belief. It stems from the fact that, on the one hand, Lucas and Penrose have, unquestioningly, put faith in, and followed, standard expositions of classical theory in overlooking what Gödel has actually proven in Theorem VI ([Go31], p24) of his seminal 1931 paper [Go31] on formally undecidable arithmetical propositions; on the other, they have, similarly, put faith in, and uncritically accepted as definitive, Gödel's own, informal and unvalidated, interpretation of the implications of this Theorem ([Go31], p27).
    [Show full text]