Role of G-Proteins in the Differentiation of Epiphyseal Chondrocytes

Total Page:16

File Type:pdf, Size:1020Kb

Role of G-Proteins in the Differentiation of Epiphyseal Chondrocytes A S CHAGIN and H M KRONENBERG G-proteins in chondrocyte 53:2 R39–R45 Review differentiation Role of G-proteins in the differentiation of epiphyseal chondrocytes Andrei S Chagin and Henry M Kronenberg1 Correspondence should be addressed Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz Vagen 2, Stockholm 17177, to A S Chagin Sweden Email 1Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA [email protected] Abstract Herein, we review the regulation of differentiation of the growth plate chondrocytes by Key Words G-proteins. In connection with this, we summarize the current knowledge regarding each " bone family of G-protein a subunit, specifically, Gas,Gaq/11,Ga12/13, and Gai/o. We discuss different " G proteins mechanisms involved in chondrocyte differentiation downstream of G-proteins and " intracellular signaling different G-protein-coupled receptors (GPCRs) activating G-proteins in the epiphyseal " parathyroid and bone chondrocytes. We conclude that among all G-proteins and GPCRs expressed by chondrocytes, " skeletal Gas has the most important role and prevents premature chondrocyte differentiation. Receptor for parathyroid hormone (PTHR1) appears to be the major activator of Gas in chondrocytes and ablation of either one leads to accelerated chondrocyte differentiation, Journal of Molecular premature fusion of the postnatal growth plate, and ultimately short stature. Endocrinology (2014) 53, R39–R45 Journal of Molecular Endocrinology The growth plate from the surrounding perichondrium (a thin layer of flat undifferentiated cells surrounding every cartilage The majority of bones in the skeleton are formed via element) into the center of the element (Maes et al. the process of endochondral bone formation. During this 2010). Thus, true bone tissue starts to be formed by process, a cartilage template is first formed and then osteoblasts in the center of cartilage anlagen, creating the replaced by true bone tissue. Formation of skeletal primary ossification center. In the case of long bones, elements starts with condensation of mesenchymal cells the secondary ossification centers are subsequently with their subsequent differentiation into chondrocytes formed in a similar manner at the ends of the growing (Hall & Miyake 1995). The chondrocytes proliferate cartilage template. The secondary ossification center thereby increasing the size of the primary skeletal element. develops into the epiphysis and primary ossification The cells in the center of the element stop proliferating, center develops into the metaphysis and diaphysis. The change their genetic program, and enlarge (hypertrophic cartilage remaining between the epiphysis and metaphysis differentiation), further facilitating growth of the skeletal forms the growth plate, a disc with spatially organized element. The cartilage elements are avascular and reach chondrocytes. The growth plate can be morphologically a substantial size, triggering hypoxia in the middle of divided into three zones: a resting zone with round stem- the skeletal element. The hypertrophic chondrocytes like chondrocytes located toward the epiphysis, a flat cell secrete vascular endothelial growth factor that attracts zone with proliferating chondrocytes in the middle, and blood vessels (Zelzer et al. 2004). Invasion by blood vessels a hypertrophic zone containing differentiated enlarged is accompanied by closely associated pre-osteoblasts chondrocytes located toward the metaphysis (Fig. 1). The http://jme.endocrinology-journals.org Ñ 2014 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-14-0093 Printed in Great Britain Downloaded from Bioscientifica.com at 09/27/2021 08:06:09PM via free access Review A S CHAGIN and H M KRONENBERG G-proteins in chondrocyte 53:2 R40 differentiation plate and decrease in IHH levels, in turn, leads to a decrease in PTHRP expression and a decrease in the distance Epiphysis between round and pre-hypertrophic cells. Thus, together Secondary IHH and PTHRP form a feedback loop, which controls the ossification center height of the growth plate (reviewed by Kronenberg (2003)). Subsequently, chondrocyte differentiation is associated with dramatic cell enlargement (hypertrophy); this cellular enlargement accounts for 59% of bone Epiphyseal growth lengthening (up to 73% with associated matrix (Wilsman plate et al. 1996)). Eventually, hypertrophic chondrocytes die, allowing new bone to be formed on the cartilage template. The zone of cartilage to bone transition is called the Metaphyseal bone chondro-osseous junction and the entire process is called endochondral bone formation. Thus, the rate of bone growth depends on the Zone of resting following steps: recruitment of stem-like quiescent cells (stem-like) into flat zone, chondrocyte proliferation, differentiation chondrocytes from flat to hypertrophic chondrocytes, chondrocyte Zone of flat enlargement and, finally, replacement of hypertrophic (columnar or chondrocytes by bone tissue. The rates of all these proliferative) chondrocytes processes are tightly balanced; deregulation in the rate of any of them will lead to growth abnormalities, usually leading to short stature. Zone of hypertrophic chondrocytes G-proteins Chondro-osseous junction G-protein-coupled receptors (GPCRs), a large family of seven-transmembrane domain receptors, mediate their Journal of Molecular Endocrinology signaling via heterotrimeric G-protein complexes, which Figure 1 consists of a, b, and g subunits. Sixteen genes encode Structure of the growth plate. Tibial growth plate from 15-day-old mouse is shown. The section is stained with hematoxylin and eosin. Ga subunits, five encode Gb, and 12 genes encode Gg subunits. When inactive, guanosine diphosphate (GDP) is chondrocytes from the resting zone are recruited into bound to the a subunit, stabilizing the complex between the flat zone, where they go through several cycles of a, b, and g. Upon activation of the GPCR, the receptor proliferation, thereby substantially increasing in number functions as a nucleotide exchanger: GDP is replaced and thereafter further differentiate into hypertrophic by the more abundant GTP. This leads to the dissociation chondrocytes. As soon as the cells cease proliferation and of Ga–GTP from Gbg and allows Ga–GTP to activate become pre-hypertrophic (changing from flat to round downstream effectors. The Gbg dimer also may mediate appearance), they start expressing the genes for Indian signaling (reviewed in Gautam et al. (1998) and Oldham & hedgehog (IHH) and the receptor for parathyroid hormone Hamm (2008)), but the role of this signaling pathway (PTHR1). IHH is a secreted molecule that diffuses through- in chondrocytes is largely unknown. The Ga–GTP out the cartilage and stimulates the production of PTH- complex remains active until GTP is hydrolyzed. Gas has related peptide (PTHRP) by resting cells at the top of the an intrinsic hydrolytic activity (GTPase), which is growth plate. The PTHRP, in turn, diffuses back to pre- enhanced by the regulators of G protein signaling (or hypertrophic cells, binds to the PTHR1, and inhibits RGS). There are about 30 different RGSs and their role in chondrocyte differentiation. This inhibition increases the bone is comprehensively discussed in a recent review distance between the resting zone and the pre-hypertrophic (Keinan et al. 2014). chondrocytes and decreases the levels of IHH, which reach On the basis of similarity of their a-subunits, 16 cells of the resting zone. This expansion of the growth members of the Ga subunit family are divided into four http://jme.endocrinology-journals.org Ñ 2014 Society for Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/JME-14-0093 Printed in Great Britain Downloaded from Bioscientifica.com at 09/27/2021 08:06:09PM via free access Review A S CHAGIN and H M KRONENBERG G-proteins in chondrocyte 53:2 R41 differentiation major classes: Gas,Gaq/11,Ga12/13, and Gai/o (Freissmuth Gas and chondrocyte differentiation et al. 1989, Simon et al. 1991, Neves et al. 2002). It appears that Gas is a major participant in chondrocyte The stimulatory a subunit (Gas) family consists of differentiation, and it inhibits the differentiation process. three members: Gas small and large splice isoforms of the In humans, mutation of the Gas-encoding gene, GNAS1, same GNAS1 gene and Gaolf. The active Gas activates leads to Albright’s hereditary osteodystrophy, which is adenylate cyclase, an enzyme that catalyzes the synthesis associated with growth abnormalities, short stature, of cAMP from ATP within cells. The GPCRs are activated brachydactyly, and premature fusion of the growth plates by many types of ligands, including glycoproteins, many (Steinbach et al. 1965). The mechanism underlying these peptide hormones, catecholamines, and neurotransmit- abnormalities has been explored using genetic mouse ters; all such types of ligands can activate Gas to raise the a et al concentration of intracellular cAMP in their target cells. models. Targeted ablation of G s in fetal (Sakamoto . et al cAMP works as a second messenger activating several 2005) or postnatal (Chagin . 2014) chondrocytes leads downstream targets including protein kinase A (PKA, also to dramatic acceleration of chondrocyte differentiation known as the cAMP-dependent protein kinase or A and cessation of longitudinal bone growth. Chimeric mice kinase), cAMP-regulated guanine nucleotide exchange with cells deficient in the Gnas1 gene demonstrate factors 1 and 2
Recommended publications
  • Histamine Receptors
    Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity.
    [Show full text]
  • Receptor Antagonist (H RA) Shortages | May 25, 2020 2 2 2 GERD4,5 • Take This Opportunity to Determine If Continued Treatment Is Necessary
    H2-receptor antagonist (H2RA) Shortages Background . 2 H2RA Alternatives . 2 Therapeutic Alternatives . 2 Adults . 2 GERD . 3 PUD . 3 Pediatrics . 3 GERD . 3 PUD . 4 Tables Table 1: Health Canada–Approved Indications of H2RAs . 2 Table 2: Oral Adult Doses of H2RAs and PPIs for GERD . 4 Table 3: Oral Adult Doses of H2RAs and PPIs for PUD . 5 Table 4: Oral Pediatric Doses of H2RAs and PPIs for GERD . 6 Table 5: Oral Pediatric Doses of H2RAs and PPIs for PUD . 7 References . 8 H2-receptor antagonist (H2RA) Shortages | May 25, 2020 1 H2-receptor antagonist (H2RA) Shortages BACKGROUND Health Canada recalls1 and manufacturer supply disruptions may be causing shortages of commonly used acid-reducing medications called histamine H2-receptor antagonists (H2RAs) . H2RAs include cimetidine, famotidine, nizatidine and ranitidine . 2 There are several Health Canada–approved indications of H2RAs (see Table 1); this document addresses the most common: gastroesophageal reflux disease (GERD) and peptic ulcer disease (PUD) . 2 TABLE 1: HEALTH CANADA–APPROVED INDICATIONS OF H2RAs H -Receptor Antagonists (H RAs) Health Canada–Approved Indications 2 2 Cimetidine Famotidine Nizatidine Ranitidine Duodenal ulcer, treatment ü ü ü ü Duodenal ulcer, prophylaxis — ü ü ü Benign gastric ulcer, treatment ü ü ü ü Gastric ulcer, prophylaxis — — — ü GERD, treatment ü ü ü ü GERD, maintenance of remission — ü — — Gastric hypersecretion,* treatment ü ü — ü Self-medication of acid indigestion, treatment and prophylaxis — ü† — ü† Acid aspiration syndrome, prophylaxis — — — ü Hemorrhage from stress ulceration or recurrent bleeding, — — — ü prophylaxis ü = Health Canada–approved indication; GERD = gastroesophageal reflux disease *For example, Zollinger-Ellison syndrome .
    [Show full text]
  • Histamine in the Control of Gastric Acid Secretion: a Topic Review
    Pharmacological Research 47 (2003) 299–304 Histamine in the control of gastric acid secretion: a topic review Elisabetta Barocelli∗, Vigilio Ballabeni Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, Parco Area delle Scienze, 27/A, Parma 43100, Italy Accepted 30 December 2002 Abstract In this paper, the current knowledge about the role of histamine in the control of gastric acid secretion is reviewed. In particular, we focus this topic into three sections considering the recent insights on: histamine receptor subtypes involved in gastric acid secretion, the interplay between neuronal–hormonal–paracrine pathways and the cerebral histaminergic control of gastric secretion. From the careful perusal of scientific literature, the fundamental role of histamine as local stimulator of gastric acid secretion via H2 receptors is fairly confirmed while for the H3 receptor only a minor modulating role is hypothesized. An undisputed function of ECL cells as controllable source of histamine within the so-called gastrin–ECL cell–parietal cell axis is generally proposed and the intriguing possibility of a remote control of gastric secretion via H3 receptors is also suggested. © 2003 Elsevier Science Ltd. All rights reserved. Keywords: Secretagogue; Histaminergic system; Gastric acid secretion 1. Introduction the central and in the peripheral neuronal networks [7] and its cloning [8] major attention was devoted by researchers Although histamine has been found to be a potent secret- mainly to the re-examination of apparently anomalous ef- agogue of acid secretion since 1920 [1], its physiologic role fects exerted by histamine. Also for gastric acid secretion, in the stomach is again a subject of debate as also acetyl- although here histamine plays an undisputed central role choline and gastrin are of prime importance in the stimula- through H2 receptors activation [9], the possible involvement tion of gastric acid production.
    [Show full text]
  • Histamine H2-Receptor Antagonists Improve Non-Steroidal Anti-Inflammatory Drug-Induced Intestinal Dysbiosis
    International Journal of Molecular Sciences Article Histamine H2-Receptor Antagonists Improve Non-Steroidal Anti-Inflammatory Drug-Induced Intestinal Dysbiosis Rei Kawashima, Shun Tamaki, Fumitaka Kawakami, Tatsunori Maekawa and Takafumi Ichikawa * Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Kanagawa 252-0374, Japan; [email protected] (R.K.); [email protected] (S.T.); [email protected] (F.K.); [email protected] (T.M.) * Correspondence: [email protected]; Tel.: +81-42-778-8863 Received: 8 October 2020; Accepted: 30 October 2020; Published: 31 October 2020 Abstract: Dysbiosis, an imbalance of intestinal flora, can cause serious conditions such as obesity, cancer, and psychoneurological disorders. One cause of dysbiosis is inflammation. Ulcerative enteritis is a side effect of non-steroidal anti-inflammatory drugs (NSAIDs). To counteract this side effect, we proposed the concurrent use of histamine H2 receptor antagonists (H2RA), and we examined the effect on the intestinal flora. We generated a murine model of NSAID-induced intestinal mucosal injury, and we administered oral H2RA to the mice. We collected stool samples, compared the composition of intestinal flora using terminal restriction fragment length polymorphism, and performed organic acid analysis using high-performance liquid chromatography. The intestinal flora analysis revealed that NSAID [indomethacin (IDM)] administration increased Erysipelotrichaceae and decreased Clostridiales but that both had improved with the concurrent administration of H2RA. Fecal levels of acetic, propionic, and n-butyric acids increased with IDM administration and decreased with the concurrent administration of H2RA. Although in NSAID-induced gastroenteritis the proportion of intestinal microorganisms changes, leading to the deterioration of the intestinal environment, concurrent administration of H2RA can normalize the intestinal flora.
    [Show full text]
  • Sensory Neuron Regulation of Gastrointestinal Inflammation And
    Key Symposium doi: 10.1111/joim.12591 Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence N. Y. Lai, K. Mills & I. M. Chiu From the Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA Content List – Read more articles from the symposium: 13th Key Symposium - Bioelectronic Medicine: Technology targeting molecular mechanisms. Abstract. Lai NY, Mills K, Chiu IM (Harvard Medical recent work on the mechanisms of bacterial detec- School, Boston, MA, USA). Sensory neuron tion by distinct subtypes of gut-innervating sen- regulation of gastrointestinal inflammation and sory neurons. Upon activation, sensory neurons bacterial host defence (Key Symposium). J Intern communicate to the immune system to modulate Med 2017; 282:5–23. tissue inflammation through antidromic signalling and efferent neural circuits. We discuss how this Sensory neurons in the gastrointestinal tract have neuro-immune regulation is orchestrated through multifaceted roles in maintaining homeostasis, transient receptor potential ion channels and sen- detecting danger and initiating protective sory neuropeptides including substance P, calci- responses. The gastrointestinal tract is innervated tonin gene-related peptide, vasoactive intestinal by three types of sensory neurons: dorsal root peptide and pituitary adenylate cyclase-activating ganglia, nodose/jugular ganglia and intrinsic pri- polypeptide. Recent studies also highlight a role for mary afferent neurons. Here, we examine how sensory
    [Show full text]
  • International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors
    1521-0081/67/3/601–655$25.00 http://dx.doi.org/10.1124/pr.114.010249 PHARMACOLOGICAL REVIEWS Pharmacol Rev 67:601–655, July 2015 Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ELIOT H. OHLSTEIN International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors Pertti Panula, Paul L. Chazot, Marlon Cowart, Ralf Gutzmer, Rob Leurs, Wai L. S. Liu, Holger Stark, Robin L. Thurmond, and Helmut L. Haas Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry (H.S.) and Institute of Neurophysiology, Medical Faculty (H.L.H.), Heinrich-Heine-University Duesseldorf, Germany; and Janssen Research & Development, LLC, San Diego, California (R.L.T.) Abstract ....................................................................................602 Downloaded from I. Introduction and Historical Perspective .....................................................602 II. Histamine H1 Receptor . ..................................................................604 A. Receptor Structure
    [Show full text]
  • Studies on Serotonin (5-HT) 3-Receptor Antagonist Effects Of
    Jpn. J. Pharmacol. 67, 185-194 (1995) Studies on Serotonin (5-HT)3-Receptor Antagonist Effects of Enantiomers of 4, 5,6,7-Tetrahydro-1H-Benzimidazole Derivatives Takeshi Kamato, Hiroyuki Ito, Takeshi Suzuki, Keiji Miyata and Kazuo Honda Neuroscience and Gastrointestinal Research Laboratory, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki 305, Japan Received June 24, 1994 Accepted November 28, 1994 ABSTRACT-We assessed the 5-HT3-receptor antagonist effects of 4,5,6,7-1H-benzimidazole compounds which are derivatives of YM060, a potent and selective 5-HT3-receptor antagonist, in isolated guinea pig co- lon. YM114 (KAE-393), YM-26103-2, YM-26308-2 (3 x 10-9 to 3 x 10-8 M) produced concentration-depend- ent shifts to the right of the dose-response curves for both 5-HT and 2-methyl-5-HT (2-Me-5-HT). YM114 (pA2=9.08 against 5-HT, pA2=8.88 against 2-Me-5-HT), YM-26103-2 (pA2=8.27 against 5-HT, pA2 = 8.19 against 2-Me-5-HT), and YM-26308-2 (pA2 = 8.58 against 5-HT, pA2 = 8.4 against 2-Me-5-HT) show- ed similar pA2 values irrespective of the agonist used, suggesting that they have 5-HT3-receptor blocking activity irrespective of the N-position at the aromatic ring. Since these compounds have an asymmetric center, their enantiomers exist. The S-isomers were one to three orders of magnitude less potent than the respective R-isomer compounds, indicating that the stereochemical configuration of 4,5,6,7-tetrahydro-lH- benzimidazoles is an important determinant of their affinity for 5-HT3 receptors.
    [Show full text]
  • Kenneth Martin Rosenberg Email: [email protected], [email protected] 660 West Redwood Street, Howard Hall Room 332D, Baltimore, MD, 21201
    The impact of the non-immune chemiome on T cell activation Item Type dissertation Authors Rosenberg, Kenneth Publication Date 2020 Abstract T cells are critical organizers of the immune response and rigid control over their activation is necessary for balancing host defense and immunopathology. It takes 3 signals provided by dendritic cells (DC) to fully activate a T cell response – T ce... Keywords signaling; T cell; T-Lymphocytes--immunology Download date 02/10/2021 13:41:58 Link to Item http://hdl.handle.net/10713/14477 Kenneth Martin Rosenberg Email: [email protected], [email protected] 660 West Redwood Street, Howard Hall Room 332D, Baltimore, MD, 21201 EDUCATION MD, University of Maryland, Baltimore, MD Expected May 2022 PhD, University of Maryland, Baltimore, MD December 2020 Graduate Program: Molecular Microbiology and Immunology (MMI) BS, University of Maryland, College Park, MD May 2013 Major: Bioengineering, cum laude University Honors Citation, Gemstone Citation RESEARCH EXPERIENCE UMSOM Microbiology and Immunology Baltimore, MD July 2016-present PhD Candidate Principal Investigator: Dr. Nevil Singh Thesis: The impact of the non-immune chemiome on T cell activation Examined environmental stimuli from classically “non-immune” sources – growth factors, hormones, neurotransmitters, etc. – act to modulate T cell signaling pathways and the functional effects of activating encounters with dendritic cells. UMSOM Anatomy and Neurobiology Baltimore, MD May-August 2015 Rotating student Principal Investigator: Dr. Asaf Keller Studied the role of descending modulation pathways on affective pain transmission. Performed tract- tracing experiments using targeted injection of Cholera toxin subunit B into the lateral parabrachial nucleus and ventrolateral periaqueductal gray of anesthetized transgenic mice.
    [Show full text]
  • The Structure and Function of V1b Vasopressin Receptor
    The Structure and Function of V1b Vasopressin Receptors Yukie Goto A thesis submitted to the University of Birmingham for the degree of Doctor of Philosophy School of Biosciences University of Birmingham Edgbaston, Birmingham B15 2TT, United Kingdom September 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Acknowledgement Firstly I would like to thank my supervisor Professor Mark Wheatley for giving me this opportunity to participate in his research, and for his support and guidance throughout my study. I would also like to thank those who have worked in his research group: in particular John for providing us with molecular models of vasopressin receptors; Alex, Mattew, Denise, Cymone and Amelia, for equipping me with the laboratory techniques required for carrying out this study; and Rachel and Richard for their companies and supports in the research group for last few years. I am truly grateful to Dr. David Poyner and Prof. Ian Martin for their inspiring teachings on this subject area in my undergraduate years. My gratitude goes to Rosemary for her conscientious hard work in looking after laboratories, equipments, and students; and to Eva, David, Karthik, Prof.
    [Show full text]
  • Histamine H2-Antagonists, Proton Pump Inhibitors and Other Drugs That Alter Gastric Acidity
    Jack DeRuiter, Principles of Drug Action 2, Fall 2001 HISTAMINE H2-ANTAGONISTS, PROTON PUMP INHIBITORS AND OTHER DRUGS THAT ALTER GASTRIC ACIDITY I. Introduction Peptide ulcer disease (PUD) is a group of upper gastrointestinal tract disorders that result from the erosive action of acid and pepsin. Duodenal ulcer (DU) and gastric ulcer (GU) are the most common forms although PUD may occur in the esophagus or small intestine. Factors that are involved in the pathogenesis and recurrence of PUD include hypersecretion of acid and pepsin and GI infection by Helicobacter pylori, a gram-negative spiral bacterium. H. Pylori has been found in virtually all patients with DU and approximately 75% of patients with GU. Some risk factors associated with recurrence of PUD include cigarette smoking, chronic use of ulcerogenic drugs (e.g. NSAIDs), male gender, age, alcohol consumption, emotional stress and family history. The goals of PUD therapy are to promote healing, relieve pain and prevent ulcer complications and recurrences. Medications used to heal or reduce ulcer recurrence include antacids, antimuscarinic drugs, histamine H2-receptor antagonists, protective mucosal barriers, proton pump inhibitors, prostaglandins and bismuth salt/antibiotic combinations. A characteristic feature of the stomach is its ability to secrete acid as part of its involvement in digesting food for absorption later in the intestine. The presence of acid and proteolytic pepsin enzymes, whose formation from pepsinogen is facilitated by the low gastric pH, is generally assumed to be required for the hydrolysis of proteins and other foods. The acid secretory unit of the gastric + + mucosa is the parietal (oxyntic) cell.
    [Show full text]
  • Regulatory Roles of Histamine in Pre-Eclampsia
    Placental Genomics: Regulatory Roles of Histamine in Pre-eclampsia Obed Brew A commentary submitted in partial fulfilment of the requirements of University of West London for the degree of Doctor of Philosophy 2017 2 Acknowledgements My sincere thanks to Dr Mark Sullivan and Professor Anthony Woodman for their dedicated and continual support for this work. My sincere thanks also to my family for their patience and endurance. Acts 20:24 3 Abstract Aim: Pre-eclampsia (PE) is a multifactorial pregnancy related disorder and a major cause of perinatal mortality. Mothers who develop PE present with clinical symptoms akin to experimentally induced elevated histamine. Maternal blood histamine is elevated, while Diamine Amine Oxidase (DAO) level is diminished in PE. The abnormalities in placental development and functions linked to aetiology of PE have similarities with effects of elevated histamine in other tissues, yet the effects of the elevated histamine on placental function were not directly investigated. Therefore, a series of studies were undertaken and published to increase our knowledge and elucidate our understanding on: (1) the functionality of elevated histamine in the placenta; (2) the causes of the elevated histamine in PE placentae, and (3) of the effects of the elevated histamine on placental gene expression and the implications for PE. Methods: A series of published high-throughput methodologies have been critically discussed in this commentary. Molecular biotechnology and bioinformatics methodologies such as, ex vivo elevated histamine placental explant model, gene cloning, RT-qPCR, In situ hybridization, microarrays, enzymological analysis, ELISA, Immunohistochemistry, RNA expression array assay analysis, integrated meta-gene analyses, Gene Set Enrichment Analysis, Gene Ontology and biological pathway analyses, Leading Edge Metagene analysis, Systematic Reviews with Meta- analysis and Causal effect analysis have been discussed.
    [Show full text]
  • Efficacy of Serotonin Receptor Agonists in the Treatment of Functional Dyspepsia: a Meta-Analysis
    Systematic review/Meta-analysis Efficacy of serotonin receptor agonists in the treatment of functional dyspepsia: a meta-analysis Man Jin1, Yali Mo1, Kaisheng Ye2, Mingxian Chen3, Yi Liu1, Cao He1 1Department of Medicine, Hangzhou Seventh People’s Hospital, Zhejiang, China Corresponding author: 2Hangzhou Wengjingtang Combination of Chinese Traditional and Western Medicine Kaisheng Ye Clinic, Zhejiang, China Hangzhou Kanghui 3Department of Digestive Diseases, Chinese Traditional Medicine Research Institute Combination of of Zhejiang Province, China Traditional and Western Medicine Clinic Submitted: 23 August 2016 310019 Zhejiang, China Accepted: 1 January 2017 Phone: 15397010817 Fax: 0571-58123951 Arch Med Sci 2019; 15, 1: 23–32 E-mail: DOI: https://doi.org/10.5114/aoms.2017.69234 [email protected] Copyright © 2017 Termedia & Banach Abstract Introduction: Functional dyspepsia (FD) is typically treated with serotonin receptor (5-HT) agonists such as cisapride, mosapride, tegaserod and tan- dospirone citrate. However, there are conflicting efficacy data, possibly due to significant heterogeneity between studies. In this meta-analysis, we an- alyzed the efficacy and safety data from studies evaluating the efficacy of serotonin receptor agonists in patients with FD. Material and methods: Relevant studies were selected from the Medline, Cochrane, EMBASE, and Google Scholar databases. The meta-analysis in- cluded 10 RCTs which evaluated the efficacy of serotonin receptor agonists in patients with FD (final total of 892 patients in the serotonin receptor agonist group, and 640 participants in the placebo group). The primary out- comes were the response rates and abdominal symptoms score. The Co- chrane Collaboration’s tool was used to assess risk. Sensitivity analysis was carried out using the leave-one-out approach.
    [Show full text]